三年片免费观看影视大全,tube xxxx movies,最近2019中文字幕第二页,暴躁少女CSGO高清观看

控制技術論文匯總十篇

時間:2023-03-24 15:07:16

序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇控制技術論文范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。

控制技術論文

篇(1)

1引言

信息時代的高新技術流向傳統產業,引起后者的深刻變革。作為傳統產業之一的機械工業,在這場新技術革命沖擊下,產品結構和生產系統結構都發生了質的躍變,微電子技術、微計算機技術的高速發展使信息、智能與機械裝置和動力設備相結合,促使機械工業開始了一場大規模的機電一體化技術革命。

隨著計算機技術、電子電力技術和傳感器技術的發展,各先進國家的機電一體化產品層出不窮。機床、汽車、儀表、家用電器、輕工機械、紡織機械、包裝機械、印刷機械、冶金機械、化工機械以及工業機器人、智能機器人等許多門類產品每年都有新的進展。機電一體化技術已越來越受到各方面的關注,它在改善人民生活、提高工作效率、節約能源、降低材料消耗、增強企業競爭力等方面起著極大的作用。

在機電一體化技術迅速發展的同時,運動控制技術作為其關鍵組成部分,也得到前所未有的大發展,國內外各個廠家相繼推出運動控制的新技術、新產品。本文主要介紹了全閉環交流伺服驅動技術(FullClosedACServo)、直線電機驅動技術(LinearMotorDriving)、可編程序計算機控制器(ProgrammableComputerController,PCC)和運動控制卡(MotionControllingBoard)等幾項具有代表性的新技術。

2全閉環交流伺服驅動技術

在一些定位精度或動態響應要求比較高的機電一體化產品中,交流伺服系統的應用越來越廣泛,其中數字式交流伺服系統更符合數字化控制模式的潮流,而且調試、使用十分簡單,因而被受青睞。這種伺服系統的驅動器采用了先進的數字信號處理器(DigitalSignalProcessor,DSP),可以對電機軸后端部的光電編碼器進行位置采樣,在驅動器和電機之間構成位置和速度的閉環控制系統,并充分發揮DSP的高速運算能力,自動完成整個伺服系統的增益調節,甚至可以跟蹤負載變化,實時調節系統增益;有的驅動器還具有快速傅立葉變換(FFT)的功能,測算出設備的機械共振點,并通過陷波濾波方式消除機械共振。

一般情況下,這種數字式交流伺服系統大多工作在半閉環的控制方式,即伺服電機上的編碼器反饋既作速度環,也作位置環。這種控制方式對于傳動鏈上的間隙及誤差不能克服或補償。為了獲得更高的控制精度,應在最終的運動部分安裝高精度的檢測元件(如:光柵尺、光電編碼器等),即實現全閉環控制。比較傳統的全閉環控制方法是:伺服系統只接受速度指令,完成速度環的控制,位置環的控制由上位控制器來完成(大多數全閉環的機床數控系統就是這樣)。這樣大大增加了上位控制器的難度,也限制了伺服系統的推廣。目前,國外已出現了一種更完善、可以實現更高精度的全閉環數字式伺服系統,使得高精度自動化設備的實現更為容易。其控制原理如圖1所示。

該系統克服了上述半閉環控制系統的缺陷,伺服驅動器可以直接采樣裝在最后一級機械運動部件上的位置反饋元件(如光柵尺、磁柵尺、旋轉編碼器等),作為位置環,而電機上的編碼器反饋此時僅作為速度環。這樣伺服系統就可以消除機械傳動上存在的間隙(如齒輪間隙、絲杠間隙等),補償機械傳動件的制造誤差(如絲杠螺距誤差等),實現真正的全閉環位置控制功能,獲得較高的定位精度。而且這種全閉環控制均由伺服驅動器來完成,無需增加上位控制器的負擔,因而越來越多的行業在其自動化設備的改造和研制中,開始采用這種伺服系統。

3直線電機驅動技術

直線電機在機床進給伺服系統中的應用,近幾年來已在世界機床行業得到重視,并在西歐工業發達地區掀起"直線電機熱"。

在機床進給系統中,采用直線電動機直接驅動與原旋轉電機傳動的最大區別是取消了從電機到工作臺(拖板)之間的機械傳動環節,把機床進給傳動鏈的長度縮短為零,因而這種傳動方式又被稱為"零傳動"。正是由于這種"零傳動"方式,帶來了原旋轉電機驅動方式無法達到的性能指標和優點。

1.高速響應由于系統中直接取消了一些響應時間常數較大的機械傳動件(如絲杠等),使整個閉環控制系統動態響應性能大大提高,反應異常靈敏快捷。

2.精度直線驅動系統取消了由于絲杠等機械機構產生的傳動間隙和誤差,減少了插補運動時因傳動系統滯后帶來的跟蹤誤差。通過直線位置檢測反饋控制,即可大大提高機床的定位精度。

3.動剛度高由于"直接驅動",避免了啟動、變速和換向時因中間傳動環節的彈性變形、摩擦磨損和反向間隙造成的運動滯后現象,同時也提高了其傳動剛度。

4.速度快、加減速過程短由于直線電動機最早主要用于磁懸浮列車(時速可達500Km/h),所以用在機床進給驅動中,要滿足其超高速切削的最大進個速度(要求達60~100M/min或更高)當然是沒有問題的。也由于上述"零傳動"的高速響應性,使其加減速過程大大縮短。以實現起動時瞬間達到高速,高速運行時又能瞬間準停。可獲得較高的加速度,一般可達2~10g(g=9.8m/s2),而滾珠絲杠傳動的最大加速度一般只有0.1~0.5g。

5.行程長度不受限制在導軌上通過串聯直線電機,就可以無限延長其行程長度。

6.運動動安靜、噪音低由于取消了傳動絲杠等部件的機械摩擦,且導軌又可采用滾動導軌或磁墊懸浮導軌(無機械接觸),其運動時噪音將大大降低。

7.效率高由于無中間傳動環節,消除了機械摩擦時的能量損耗,傳動效率大大提高。

直線傳動電機的發展也越來越快,在運動控制行業中倍受重視。在國外工業運動控制相對發達的國家已開始推廣使用相應的產品,其中美國科爾摩根公司(Kollmorgen)的PLATINNMDDL系列直線電機和SERVOSTARCD系列數字伺服放大器構成一種典型的直線永磁伺服系統,它能提供很高的動態響應速度和加速度、極高的剛度、較高的定位精度和平滑的無差運動;德國西門子公司、日本三井精機公司、臺灣上銀科技公司等也開始在其產品中應用直線電機。

4可編程計算機控制器技術

自20世紀60年代末美國第一臺可編程序控制器(ProgrammingLogicalController,PLC)問世以來,PLC控制技術已走過了30年的發展歷程,尤其是隨著近代計算機技術和微電子技術的發展,它已在軟硬件技術方面遠遠走出了當初的"順序控制"的雛形階段。可編程計算機控制器(PCC)就是代表這一發展趨勢的新一代可編程控制器。

與傳統的PLC相比較,PCC最大的特點在于它類似于大型計算機的分時多任務操作系統和多樣化的應用軟件的設計。傳統的PLC大多采用單任務的時鐘掃描或監控程序來處理程序本身的邏輯運算指令和外部的I/O通道的狀態采集與刷新。這樣處理方式直接導致了PLC的"控制速度"依賴于應用程序的大小,這一結果無疑是同I/O通道中高實時性的控制要求相違背的。PCC的系統軟件完美地解決了這一問題,它采用分時多任務機制構筑其應用軟件的運行平臺,這樣應用程序的運行周期則與程序長短無關,而是由操作系統的循環周期決定。由此,它將應用程序的掃描周期同外部的控制周期區別開來,滿足了實時控制的要求。當然,這種控制周期可以在CPU運算能力允許的前提下,按照用戶的實際要求,任意修改。

基于這樣的操作系統,PCC的應用程序由多任務模塊構成,給工程項目應用軟件的開發帶來很大的便利。因為這樣可以方便地按照控制項目中各部分不同的功能要求,如運動控制、數據采集、報警、PID調節運算、通信控制等,分別編制出控制程序模塊(任務),這些模塊既獨立運行,數據間又保持一定的相互關聯,這些模塊經過分步驟的獨立編制和調試之后,可一同下載至PCC的CPU中,在多任務操作系統的調度管理下并行運行,共同實現項目的控制要求。

PCC在工業控制中強大的功能優勢,體現了可編程控制器與工業控制計算機及DCS(分布式工業控制系統)技術互相融合的發展潮流,雖然這還是一項較為年輕的技術,但在其越來越多的應用領域中,它正日益顯示出不可低估的發展潛力。

5運動控制卡

運動控制卡是一種基于工業PC機、用于各種運動控制場合(包括位移、速度、加速度等)的上位控制單元。它的出現主要是因為:(1)為了滿足新型數控系統的標準化、柔性、開放性等要求;(2)在各種工業設備(如包裝機械、印刷機械等)、國防裝備(如跟蹤定位系統等)、智能醫療裝置等設備的自動化控制系統研制和改造中,急需一個運動控制模塊的硬件平臺;(3)PC機在各種工業現場的廣泛應用,也促使配備相應的控制卡以充分發揮PC機的強大功能。

運動控制卡通常采用專業運動控制芯片或高速DSP作為運動控制核心,大多用于控制步進電機或伺服電機。一般地,運動控制卡與PC機構成主從式控制結構:PC機負責人機交互界面的管理和控制系統的實時監控等方面的工作(例如鍵盤和鼠標的管理、系統狀態的顯示、運動軌跡規劃、控制指令的發送、外部信號的監控等等);控制卡完成運動控制的所有細節(包括脈沖和方向信號的輸出、自動升降速的處理、原點和限位等信號的檢測等等)。運動控制卡都配有開放的函數庫供用戶在DOS或Windows系統平臺下自行開發、構造所需的控制系統。因而這種結構開放的運動控制卡能夠廣泛地應用于制造業中設備自動化的各個領域。

篇(2)

2電廠集控運行控制模式應用的核心技術

電廠集控運行控制模式依托集控運行技術來實現,即為DCS系統,DCS系統作為一種綜合性控制系統,其在提高電廠設備自動化水平,實現能源節約保障系統運行安全等方面發揮著重要作用。電廠自身設備具備一定的自動化水平是應用集控運行技術的重要基礎。當前,在電廠工業生產領域,采取集控運行技術取代傳統的單獨控制技術,能夠更好發揮集控運行技術的自動化與集成化優勢。電廠集控運行核心技術為生產線管控技術,生產線管控技術的應用,能夠通過借助網絡技術與計算機技術,實現對電廠生產線中所進行的生產作業執行管理與控制操作,從而大幅提高了電廠作業自動化水平。采取4C技術可以實現對大中型生產線進行實時監督與管理控制,能夠有效預防電廠設備運行安全事故發生,對集控運行中獲取的信息及數據進行合理分析,加強集控運行優化操作,從而在提高電廠生產作業效率的基礎上,實現電廠集控運行控制的經濟性與有效性。

3提高電廠集控運行模式管理科學性以保障其運行效益

為切實保障電廠集控運行控制模式及應用效益,要求不斷革新信息技術,通過深化信息技術提高集控系統運行可靠性,提高信號集中控制能力,降低工作人員負擔并提高工作效率;不斷加強工作人員專業素養,切實掌握集控運行控制模式操作技術,優化資源及技術配置,提高工作專業水平;高度重視操作細節,加強電廠集控運行控制系統硬件與軟件維護,確保整個系統運行的安全性與可靠性。

篇(3)

在實際工作中,極其的作業形式和作業方法都存在著一定的差異,所以智能控制技術在控制目標和控制策略的選擇上也存在著很大的不同。在智能控制技術應用于挖掘機領域方面,其主要要實現的控制目標就是要實現節能環保,同時也要提高機械生產的效率。智能控制技術使用在壓路機領域方面主要就是要實現碾壓的質量和壓實的速度。當前挖掘機主要有兩種控制策略,一是“負載適應控制”另一種是“動力適應控制”。負載適應控制主要就是指在發動機發出功率已經穩定的情況下,液壓系統能夠根據實際的需要對自身的運行狀態進行適當的調整,從而使其能夠以最佳的狀態來完成工作。動力適應控制就是在實際的工作中發動機要根據運行的具體情況支持發動機的動力輸出,這也極大的節約了能源。采用“負載適應控制”技術的挖掘機,一般設有幾種動力選擇模式,如最大功率模式,標準功率模式和經濟功率模式,每種模式下的發動機輸出功率基本恒定,同時液壓泵業設有幾條恒功率曲線與之匹配。由于系統中采用了發動機速度傳感控制技術(ESS控制技術),在匹配時將每種功率模式下的泵的吸收功率設定為大于或等于該模式下的發動機輸出功率,這樣可以使液壓系統充分吸收利用發動機的功率,減少能量損失。還可以通過對泵的吸收功率的調節,協調負載與發動機的動力輸出,避免發動機熄火。在實際的工作中,操作人員需要根據作業面的具體情況選擇發動機電費模式,所以這種方式在實行的過程中還需要一定的人工參與,如果操作不當,非常容易造成浪費的現象。采用動力適應控制以后挖掘機就能夠開啟自動控制的模式,在作業的過程中,該技術可以根據實際的需要為發動機的運行提供一定的動力,這樣也有效的避免了資源和能源的浪費現象,該系統可以根據機械運行的實際需要來供給動力,在運行的過程中不需要過多人工的操作和參與,在經濟性和高效性上都有著很好的表現。這一系統的運行思路是讓機器對施工的具體情況進行有效的識別,同時根據其分析的具體狀況制定適當的解決辦法,發動機和該系統在運行的過程中會對運行的狀態進行適當的調整,這樣就能夠保證其在運行的過程中處于良好的狀態。在挖掘機智能控制技術中還需要一些節能和為操作提供方便的方法,采用這些方法能夠更好的對系統進行維護和保養,能夠更加有效的提升整個系統的性能和運行質量。智能壓路機在使用智能控制技術的過程中需要根據設定的質量和目標對壓實的效果進行有效的檢測和控制,同時還要通過系統的自我調節來尋找最佳的解決方案。

2.控制方法

任何智能控制系統包含三個過程:

(1)采集信息;

(2)處理信息并做出決策和思考;

(3)決定執行。挖掘機是通過檢測液壓系統得運行參數來識別載荷大小的,如檢測液壓系統中泵的控制壓力,泵的輸油壓力和各機構(行走,回轉,動臂提升和斗桿收回)的工作壓力等。有的還檢測先導手柄的位移量和系統流量等。挖掘機控制器根據采集的信息,通過模糊控制理論推理出所需功率的大小和發動機的最佳轉速。執行決定的過程是由控制器驅動發動機油門執行器,使發動機設定到理想的轉速和輸出功率。而壓路機是通過連續檢測振動輪的振動加速來識別地面壓實質量的。振動輪內的旋轉偏心快產生的振動,理論上是一條正弦曲線。當振動輪在地面上振動時,曲線總是被擾動的,在軟地面上額度擾動小,在硬地面上的擾動大。通過對壓路機振動輪的加速度進行快速傅立葉變換處理,能夠計算出地面壓實的數據。

篇(4)

隨著信息技術的發展,許多新方法和技術進入工程化、產品化階段,這對自動控制技術提出獷新的挑戰,促進了智能理論在控制技術中的應用,以解決用傳統的方法難以解決的復雜系統的控制問題。

一、智能控制的主要方法

智能控制技術的主要方法有模糊控制、基于知識的專家控制、神經網絡控制和集成智能控制等,以及常用優化算法有:遺傳算法、蟻群算法、免疫算法等。

2.1模糊控制

模糊控制以模糊集合、模糊語言變量、模糊推理為其理論基礎,以先驗知識和專家經驗作為控制規則。其基本思想是用機器模擬人對系統的控制,就是在被控對象的模糊模型的基礎上運用模糊控制器近似推理等手段,實現系統控制。在實現模糊控制時主要考慮模糊變量的隸屬度函數的確定,以及控制規則的制定二者缺一不可。

2.2專家控制

專家控制是將專家系統的理論技術與控制理論技術相結合,仿效專家的經驗,實現對系統控制的一種智能控制。主體由知識庫和推理機構組成,通過對知識的獲取與組織,按某種策略適時選用恰當的規則進行推理,以實現對控制對象的控制。專家控制可以靈活地選取控制率,靈活性高;可通過調整控制器的參數,適應對象特性及環境的變化,適應性好;通過專家規則,系統可以在非線性、大偏差的情況下可靠地工作,魯棒性強。

2.3神經網絡控制

神經網絡模擬人腦神經元的活動,利用神經元之間的聯結與權值的分布來表示特定的信息,通過不斷修正連接的權值進行自我學習,以逼近理論為依據進行神經網絡建模,并以直接自校正控制、間接自校正控制、神經網絡預測控制等方式實現智能控制。

1.4學習控制

(1)遺傳算法學習控制

智能控制是通過計算機實現對系統的控制,因此控制技術離不開優化技術。快速、高效、全局化的優化算法是實現智能控制的重要手段。遺傳算法是模擬自然選擇和遺傳機制的一種搜索和優化算法,它模擬生物界/生存競爭,優勝劣汰,適者生存的機制,利用復制、交叉、變異等遺傳操作來完成尋優。遺傳算法作為優化搜索算法,一方面希望在寬廣的空間內進行搜索,從而提高求得最優解的概率;另一方面又希望向著解的方向盡快縮小搜索范圍,從而提高搜索效率。如何同時提高搜索最優解的概率和效率,是遺傳算法的一個主要研究方向。

(2)迭代學習控制

迭代學習控制模仿人類學習的方法、即通過多次的訓練,從經驗中學會某種技能,來達到有效控制的目的。迭代學習控制能夠通過一系列迭代過程實現對二階非線性動力學系統的跟蹤控制。整個控制結構由線性反饋控制器和前饋學習補償控制器組成,其中線性反饋控制器保證了非線性系統的穩定運行、前饋補償控制器保證了系統的跟蹤控制精度。它在執行重復運動的非線性機器人系統的控制中是相當成功的。

二、智能控制的應用

1.工業過程中的智能控制

生產過程的智能控制主要包括兩個方面:局部級和全局級。局部級的智能控制是指將智能引入工藝過程中的某一單元進行控制器設計,例如智能PID控制器、專家控制器、神經元網絡控制器等。研究熱點是智能PID控制器,因為其在參數的整定和在線自適應調整方面具有明顯的優勢,且可用于控制一些非線性的復雜對象。全局級的智能控制主要針對整個生產過程的自動化,包括整個操作工藝的控制、過程的故障診斷、規劃過程操作處理異常等。

2.機械制造中的智能控制

在現代先進制造系統中,需要依賴那些不夠完備和不夠精確的數據來解決難以或無法預測的情況,人工智能技術為解決這一難題提供了有效的解決方案。智能控制隨之也被廣泛地應用于機械制造行業,它利用模糊數學、神經網絡的方法對制造過程進行動態環境建模,利用傳感器融合技術來進行信息的預處理和綜合。可采用專家系統的“Then-If”逆向推理作為反饋機構,修改控制機構或者選擇較好的控制模式和參數。利用模糊集合和模糊關系的魯棒性,將模糊信息集成到閉環控制的外環決策選取機構來選擇控制動作。利用神經網絡的學習功能和并行處理信息的能力,進行在線的模式識別,處理那些可能是殘缺不全的信息。

3.電力電子學研究領域中的智能控制

電力系統中發電機、變壓器、電動機等電機電器設備的設計、生產、運行、控制是一個復雜的過程,國內外的電氣工作者將人工智能技術引入到電氣設備的優化設計、故障診斷及控制中,取得了良好的控制效果。遺傳算法是一種先進的優化算法,采用此方法來對電器設備的設計進行優化,可以降低成本,縮短計算時間,提高產品設計的效率和質量。應用于電氣設備故障診斷的智能控制技術有:模糊邏輯、專家系統和神經網絡。在電力電子學的眾多應用領域中,智能控制在電流控制PWM技術中的應用是具有代表性的技術應用方向之一,也是研究的新熱點之一。

以上的三個例子只是智能控制在各行各業應用中的一個縮影,它的作用以及影響力將會關系國民生計。并且智能控制技術的發展也是日新月異,我們只有時課關注智能控制技術才能跟上其日益加快的技術更新步伐。

參考文獻:

[1]嚴宇,劉天琪.基于神經網絡和模糊理論的電力系統動態安全評估[J].四川大學學報,2004,36(1):106-110.

篇(5)

(1)能夠快捷高效的對電氣系統設備完成控制。現代化的控制技術以數字信息作為載體對電氣工程系統設備操作指令,必須確保對于不同設備不同指令的精準,各種失誤操作指令的概率必須極低。此外,現代化的控制技術還應當具有較好的信息數據交互功能,能夠及時的向控制中心進行數據信息的反饋,進而確保控制的準確性。

(2)可以實現對電氣工程系統設備的全面監控。由于很多電氣工程系統設備都是全天候運行,因此電氣控制系統同樣必須能夠實現24h的全面監控,并可以準確的完成電氣工程系統設備故障地點的診斷。此外,現代化的控制技術還應該依靠信息采集、信息處理以及指令反饋流程,形成全面的監控管理,確保電氣工程系統能實時處于控制之下。

(3)具有較高的安全性。電氣工程系統由于容易受到外部環境、系統設備故障以及管理人員操作失誤的影響,很有可能造成電氣工程系統故障,甚至出現系統運行安全事故。因此控制系統應該具有較好的安全性,重點可以對電氣工程系統的運行異常情況進行及時準確的動作處理,避免由于控制操作造成安全事故問題的發生。

2、電氣工程中現代化的控制技術應用措施分析

(1)建立完善的電氣工程系統控制構架。在電氣工程控制系統構建之前,首先必須明確需要控制系統處理電氣工程的哪些問題,要求控制系統需要具備何種功能,同時控制系統需要具備哪些管理層次。一般在電氣工程控制系統中,需要設置數據管理模塊、運行監控模塊、電氣工程管理模塊、電氣工程設施養護模塊、工作人員維護操作模塊等幾項子系統組成。

(2)合理的選用電氣工程控制系統設備。控制系統設備是整個現代控制技術實現的重要基礎保障,這也是控制系統效率與安全性的基礎。現階段在電氣工程控制系統中主要分為作業類、信息收集傳遞類以及控制處理類等三類設備。其中作業設備主要是進行各種電氣工程操作的動作,主要是控制電氣開關、換閘以及變壓穩壓等電氣工程設備。信息收集類設備主要是只對電氣工程系統運行過程進行監控的設備,主要包括電子信號轉換器、系統運行監控以及網絡傳輸設施等一系列的設備,控制類的設備則主要包括處理器與控制終端等,在設備的選擇上應該盡可能的選擇各種智能化與高效化的控制設備。

(3)電氣工程控制系統的環境管理。對電氣工程系統設備的運行環境進行監控,也是現代控制技術管理的重要內容。對電氣工程系統設施進行監控的主要目的是為了準確的掌握電氣工程系統設備運行的電壓穩定性、電流、溫度以及濕度等外部環境狀況,同時如果電氣工程系統運行環境不適宜時,啟動空調、除濕、穩壓等設備,確保電氣工程系統運行的安全穩定。

3、現代控制技術應用發展趨勢

(1)智能化控制技術。電氣系統的發展已經步入到了電氣工程自動化的階段,實現電氣工程自動化的關鍵要素就是要實現對電氣工程系統的智能化控制,因此在目前現代控制技術中最主要的內容就是對電氣工程系統的智能化控制。智能化的控制系統主要是通過采用智能化控制技術來實現電氣工程系統控制的高效、自主、遠程操作。電氣工程系統智能化在電氣系統中的應用已經十分的廣泛,例如當前電氣系統中有關于系統開關量以及模擬量等各項數據的動態實時采集以及反饋處理,都是通過智能化進行控制。此外,在電氣系統工程中對于電氣工程系統設備運行狀態的實時監測、對于故障的分析診斷以及緊急處理方面,都已經廣泛的應用了智能化的控制技術。

(2)電氣系統模糊控制技術。電氣系統模糊控制技術主要是采用現代控制理論作為基礎,通過結合自適應控制技術、人工智能技術以及神經網絡技術實現控制。在電氣工程系統控制中采用模糊控制技術,主要是針對無法準確的確定數學模型的復雜控制系統,通過在控制規則上設置具有一定模糊條件,來彌補電氣工程控制系統中的一些非線性以及不確定因素的運行控制手段。模糊控制技術是一種以模糊數學、模糊語言以及模糊規則形成理論基礎的自動控制系統,通過采用計算機控制技術形成控制與反饋的具有閉環結構特點的現代數字控制系統,對于不確定系統的控制非常實用。

(3)非線性控制技術。當前在電氣工程系統控制中,線性控制理論技術已經得到了廣泛的應用,但是由于線形控制技術主要是基于電氣工程設備運行中局部的穩定性來進行數學模型的簡化設計,在線性控制理論中并未充分的考慮到電氣工程設備的非線性因素,因此在電氣工程系統中引入非線性分析與控制方法則可以有效的解決這些問題。非線性控制系統的控制方式主要有兩種,一種是將非線性系統的某一鄰域做反饋線性化的處理,同時利用微分幾何理論等現代控制理論進行反饋顯性化。另一種則是直接的將變結構方法、魯棒控制或者是智能控制等非線性控制理論進行實際的工程應用。

篇(6)

2采用高性能混凝土施工技術

本工程混凝土最大輸送距離達300m,最大輸送高度為60m,為滿足泵送混凝土和體育場復雜特殊造型的施工要求,我們大量采用了高性能混凝土施工技術。在體育場北區配置了l臺意大利進口的大型現代化攪拌站,產量為90m’/h;南區配置了自動上料和自動稱量系統的混凝土攪拌站2座,產量為30~50m3/h。針對本工程的需要,配制高性能混凝土時為了優選原材料和配合比,我們應用“雙摻”技術,除提高混凝土的可泵性外,還有意識地預先通過試驗確定低收縮率的混凝土配合比,同時減少水泥用量,降低混凝土的水化熱和改善其收縮性能。

2.1優選原材料

選用優質的原材料,如底板施工中采用連續級配骨料,增大混凝土的密實度。嚴格控制混凝土出機和人泵坍落度,隨不同施工階段的設計要求與天氣變化情況跟蹤調整配合比,詳見表1。

2.2采用“雙摻技術

在本工程施工中,地下室底板使用KFDN-SP8外加劑,看臺樓層等混凝土結構根據具體情況,選用HPM一2高效緩凝減水劑、FE—C2外加劑等,這些高效外加劑具有高減水率和良好的保塑性能。摻外加劑混凝土與基準混凝土的減水效應比較如圖1所示。

根據本工程的具體情況,我們分別選用黃埔電廠、廣州發電廠等的I級或Ⅱ級粉煤灰,采用粉煤灰這種活性的水硬性材料代替部分水泥,補充泵送混凝土中的細骨料,提高混凝土的抗滲性、耐久性和流動性,并改善其可泵性和降低水化熱,從而提高混凝土的后期強度。

2.3配合比選擇

混凝土的配合比決定了混凝土的強度、抗滲性、和易性、坍落度、水泥用量、水化熱大小、初凝和終凝時間以及混凝土收縮率等性能指標。根據結構的不同特點和設計要求、氣候條件,摻人粉煤灰的影響以及施工現場的生產管理狀況,采用不同技術指標,由實驗室試配確定。

(1)地下室底板施工階段根據現場條件,對底板混凝土提出以下指標:①坍落度12—14cm;②初凝時間6—8h;③摻加高效減水劑,超量摻加I級粉煤灰,減少水泥用量,降低水化熱;④通過試驗選定收縮率較小的配合比。為了確保混凝土具有高性能,我們提前對混凝土配合比進行了大量反復多次的試驗,取得十幾組試配數據,測試了不同配合比混凝土的收縮率及收縮與齡期的關系,并采用鋼環試驗方法測試混凝土的長期收縮情況。測定混凝土收縮率后,有意識地模擬澆筑一塊混凝土試件進行試驗,測試其溫度變化和收縮率,確定了表2的配合比,其收縮率為0.12%0,且在14d后基本上不再收縮。實踐證明,本配合比是成功的,用I級粉煤灰代替部分水泥,大大減少了水泥用量和降低了水化熱,在確定了收縮率較小的配比后,據此收縮率確定底板分塊的最大長度為45m,相鄰塊之間混凝土澆筑的時間間隔為14d。

(2)看臺樓層選擇不同的水泥和多種外加劑進行配合比試驗研究,對外加劑的適應性進行對比試驗,得出針對不同階段和不同施工部位的優化配合比。北區采用深圳產FE—C2外加劑摻量為1.6%,黃埔電廠的Ⅱ級粉煤灰摻量為22%,既滿足了混凝土的強度要求,又具有良好的可泵性和經濟性。南區采用HPM一2高效緩凝減水劑和黃埔電廠的Ⅱ級粉煤灰得出的配合比,即:水泥:混合材:砂:石:水:外加劑=l:0.23:2.17:3.20:0.53:0.016,水泥、砂、石、水、粉煤灰、外加劑用量分別為332,722,1063,176,77,5.28~m3,水膠比0.44%,含砂率40.4%,坍落度145mm,質量密度2370kg//m3,初凝n,-Jl''''~q5—8h,終凝時間8—10h。

篇(7)

粵中(珠江三角洲地區)地網是廣東電網的核心,也是全省最大的負荷中心,該電網與廣西、香港等電網互聯,除了向珠江三角洲地區提供電力外,還擔負著電力交換任務。在粵中地區建設一個強大的500kV電網,對保證廣東電網乃至香港電網以及澳門電網的安全運行有著重大意義。目前廣東500kV電網東已延伸至汕頭西翼,江門——茂名500kV輸變電工程正加緊建設,2000年前可望投入使用。

廣東省的電力工業已經步入了大電網、高電壓和大機組時代。隨著整個電網變得越來越復雜,電網規劃中以往那種人為臆斷和局部最優的規劃方式會給電網運行、發展帶來隱患,資金盲目使用的可能性加大。結合目前理論的發展,我們認為電網規劃是一個受到多種條件約束的、以電網總效益為最終目標的多目標的系統工程。對于這樣一個系統,我們認為適宜以控制論為基礎,結合信息論、運籌學和系統工程等理論來研究。

從控制論角度來看,電網是一個巨維數的典型動態大系統,它具有強非線性、時變且參數不確切可知、含大量未建模動態部分的特征。另外,電力網絡地域分布廣闊,大部分元件具有延遲、磁滯、飽和等復雜的物理特性,對這樣的系統實現有效決策控制是極為困難的。另一方面,由于公眾對新建高壓線路的不滿日益增強,線路造價,特別是走廊使用權的費用日益昂貴,以及電力網的不斷增大,使得人們對電力網絡的決策控制提出了越來越高的要求。正是由于電網具有這樣的特征,一些先進的控制論思想和技術被不斷地引入到電網中來。下面將闡明綜合智能控制技術引入電網規劃中的必要性和可行性。

1綜合智能控制技術

1.1智能控制的概念

迄今為止,智能控制尚無統一的概念,文獻[1]有如下歸納:

a)最早提出智能控制概念當推傅京孫教授,他通過對人-機控制器和機器人方面的研究,將智能控制概括為自動控制和人工智能的結合。他認為在低層次控制中用常規的基本控制器,而在高層次的智能決策,應具有擬人化功能。

b)Saridis在傅京孫工作的基礎上,提出了三元結構的智能控制理論體系,他認為僅有二元結合無助于智能控制的有效和成功應用,必須引入運籌學,使其成為三元結合,并提出了其遞階智能控制的理論框架。

c)國內蔡自興教授在研究了上述理論結構以后,從系統的整體性和目的性出發,于1986年提出了四元結構價格體系,將智能控制概括為控制理論、人工智能、運籌學和系統理論4學科交叉。

總之,智能控制是多學科知識的結合,除了從控制論出發來研究它,還可以從信息論、生物學以及社會科學角度來討論和研究。

1.2綜合智能控制技術

綜合智能控制一方面包含了智能控制與傳統方法的結合,如模糊變結構控制,自適應模糊控制,自適應神經網絡控制,神經網絡變結構控制等;另一方面包含了各種智能控制方法之間的交叉綜合,如專家模糊控制,模糊神經網絡控制,專家神經網絡控制等。

篇(8)

(一)能高效、準確控制電氣工程現代控制技術以數字信息為載體,所以通常利用發送數字、代碼、信息的方式指令,來完成控制操作。為確保多個指令能夠第一時間發送出去、準確傳送到指定功能模塊、正確指導系統工作,系統必須設置獨立、且具備抗干擾能力的信息交流中心,依靠其交互功能,實現信息的生成、傳播、控制與管理。

(二)能全面監控電氣工程運行狀態大多數電氣工程的裝置和設備都是全天候運行的,長時間工作,勢必會導致運行故障的發生,為此,現代控制技術還要擔負起監控電氣工程運行狀態的責任,24小時監督工程內各系統設備的運行狀態,如發現故障,應立即報警信息,同時,指明故障位置、故障源、故障影響,以及相關故障資料。工作人員接收到信息后,可第一時間做出反映,修復系統、設備,使電氣工程盡快恢復運行。

(三)具有較高的安全性對于電氣工程而言,“安全”是生產不可忽視的重要原則之一,因此,為避免內、外部環境因素給電氣工程造成運行障礙和影響,現代控制技術不但要具備監控能力,還要擁有較強的自清自查能力,可獨立清除、控制安全隱患。同時,現代控制技術還應針對電氣工程眾多管理項目,設置單元模塊(如:運行監控模塊、電氣工程設施養護模塊、數據管理模塊、工作人員維護操作模塊、電子工程管理模塊等),通過層層過濾的方式,提高技術應用的安全性。只有這樣,現代控制技術才能為電氣工程提供安全、可靠的運行環境。

二、現代控制技術在電氣工程中的應用

(一)幫助電氣工程創建完整的控制系統眾所周知,電氣工程由多個系統結構構成,要想讓這些單元結構能夠獨立、連續的完成工作,現代控制技術應承擔選擇功能、設置功能、計劃功能、解釋功能等多種責任。首先,在各功能模塊上設置監控器,監測它們的操作行為、運行狀態,并以數據的形式記錄,轉存到數據庫中,如此,控制技術既可以依靠“復制數據”找出控制方式,又能隨時檢索系統運行信息,查找故障問題;其次,創建中樞系統、裝置、設備的聯動控制機制,以“作業任務”的形式分配任務,以便于系統可以同步、集中處理重要“運行信息”,不耽誤電氣工程正常工作;最后,因為電氣工程系統、裝置、設備的運行功能復雜、多樣,所以要想正確下達指令,明確指令內容要求相對困難,利用現代控制技術,可將許多復雜的指令編撰成“編碼”,由翻譯器統一處理,如此一來,不僅方便了操作,電氣工程控制管理效率、水平也會大大提升。

(二)科學選擇控制系統設備計算機網絡技術的發展,給電氣工程控制管理提供了多個便利條件、多種選擇可能,所以,作為控制管理的中樞,現代控制技術必須慎重選擇控制系統設備,使其與電氣工程形成配合,達到最佳管理效果。一方面,控制系統設備要具備信息分類、收集、檢索、處理功能,將復雜、且數目龐大的電氣工程數據集中整合到數據庫中,根據管理、控制需要,高效檢索、準確處理、順利傳遞出去;另一方面,控制系統設備還應具備信息翻譯、解釋、轉換能力,因為電氣工程中的裝置、設備不可能使用統一的編碼、指令形式,所以如果兩個運行系統、裝置的指令信息代碼不同,控制設備應能夠兼容分辨,做出正確的處理和判斷,完成智能化、自動化控制。

(三)加強電氣工程內、外部環境管理電氣工程內、外部工作環境的監測工作是其安全生產工作的重中之重,所以,現代控制技術管理工作的重要內容便是環境監測、管理,主要內容包括:監控電氣工程電流、溫度、濕度、電壓、電功率等基礎運行指標數據,如發現階段時間內這些指標數據出現較大波動變化,會立即發出報警信號;管理、控制電氣工程內其他非主要工作設備的運行狀態,比如啟動空調、除濕設備、穩壓設備、變壓設備、變頻設備等。

三、現代控制技術應用發展趨勢

篇(9)

數控機床是機電一體化的典型產品,數控機床控制技術是集計算機及軟件技術、自動控制技術、電子技術、自動檢測技術、液壓與氣動技術和精密機械等技術為一體的多學科交叉的綜合技術。隨著科學技術的高速發展,機電一體化技術迅猛發展,數控機床在企業普遍應用,對生產線操作人員的知識和能力要求越來越高。

一、數控機床的優點與缺點

(一)數控機床的優點

對零件的適應性強,可加工復雜形狀的零件表面。在同一臺數控機床上,只需更換加工程序,就可適應不同品種及尺寸工件的自動加工,這就為復雜結構的單件、小批量生產以及試制新產品提供了極大的便利,特別是對那些普通機床很難加工或無法加工的精密復雜表面(如螺旋表面),數控機床也能實現自動加工。

加工精度高,加工質量穩定。目前,數控機床控制的刀具和工作臺最小移動量(脈沖當量)普遍達到0.0001mm,而且數控系統可自動補償進給傳動鏈的反向間隙和絲杠螺距誤差,使數控機床達到很高的加工精度。此外,數控機床的制造精度高,其自動加工方式避免了生產者的人為操作誤差,因此,同一批工件的尺寸一致性好,產品合格率高,加工質量穩定。

生產效率高。由于數控機床結構剛性好,允許進行大切削用量的強力切削,從主軸轉速和進給量的變化范圍比普通機床大,因此在加工時可選用最佳切削用量,提高了數控機床的切削效率,節省了機動時間。與普通機床相比,數控機床的生產效率可提高2—3倍。

良好的經濟效益。使用數控機床進行單件、小批量生產時,可節省劃線工時,減少調整、加工和檢驗時間,節省直接生產費用;同時還能節省工裝設計、制造費用;數控機床加工精度高,質量穩定,減少了廢品率,使生產成本進一步下降。此外,數控機床還可實現一機多用,所以數控機床雖然價格較高,仍可獲得良好的經濟效益。

自動化程度高。數控機床自動化程度高,可大大減輕工人的勞動強度,減少操作人員的人數,同時有利于現代化管理,可向更高級的制造系統發展。

(二)數控機床的缺點

數控機床的主要缺點如下:價格較高,設備首次投資大;對操作、維修人員的技術要求較高;加工復雜形狀的零件時。手工編程的工作量大。

二、數控機床的種類

數控機床的種類很多,主要分類如下:

按工藝用途分類。按工藝用途,數控機床可分類如下。普通數控機床:這種分類方式與普通機床分類方法一樣,銑床、數控錨床、數控鉆床、數控磨床、數控齒輪加工機床等。加工中心機床:數控加工中心是在普通數控機床上加裝一個刀庫和自動換刀裝置而構成的數控機床,它可在一次裝夾后進行多種工序加工。

按運動方式分類。按運動方式,數控機床可分類如下:點位控制數控機床。數控系統只控制刀具從要有數控鉆床、數控坐標錘床、數控沖剪床等。直線控制數控機床:數控系統除了控制點與點之間的準確位置以外,還要保證兩點之間移動的軌跡是一條直線,而且對移動的速度也要進行控制。這類機床主要有簡易數控車床、數控銷、銑床等。輪廓控制數控機床:數控系統能對兩個或兩個以上運動坐標的位移及速度進行連續相關的控制,使合成的運動軌跡能滿足加工的要求。這類機床主要有數控車床、數控銑床等。

按伺服系統的控制方式分類。按伺服系統的控制方式,數控機床可分類如下。開環控制系統的數控機床。閉環控制系統的數控機床。半閉環控制系統的數控機床。

按數控系統的功能水平分類。技功能水平分類,數控系統可分類如下。經濟性數控機床。經濟性數控機床大多指采用開環控制系統的數控機床價格便宜,適用于自動化程度要求不高的場合。中檔數控機床。這類數控機床功能較全,價格適中,應用較廣。高檔數控機床。這類數控機床功能齊全,價格較貴。

三、數控機床控制技術的發展

機械設備最早的控制裝置是手動控制器。目前,繼電器—接觸器控制仍然是我國機械設備最基本的電氣控制形式之一。到了20世紀奶年代至50年代,出現了交磁放大機—電動機控制,這是一種閉環反饋系統,系統的控制精度和快速性都有了提高。20世紀60年代出現了晶體管——晶閘管控制,由晶閘管供電的直流調速系統和交流調速系統不僅調運性能大為改善,而且減少了機械設備和占地面積,耗電少,效率局,完全取代了交磁放大機—電動機控制系統。

在20世紀的60年代出現丁一種能夠根據需要方便地改變控制程序,結構簡單、價格低廉的自動化裝置—順序控制器。隨著大規模集成電路和微處理器技術的發展及應用,在20世紀70年代出現了一種以微處理器為核心的新型工業控制器——可編程序控制器。這種器件完全能夠適應惡劣的工業環境,由于它具備了計算機控制和繼電器控制系統兩方面的優點,故目前已作為一種標準化通用設備普通應用于工業控制。

隨著計算機技術的迅速發展,數控機床的應用日益廣泛,井進一步推動了數控系統的發展,產生了自動編程系統、計算機數控系統、計算機群控系統和天性制造系統。計算機集成制造系統及計算機輔助設計、制造一體化是機械制造一體化的高級階段,可實現產品從設計到制造的全部自動化。

篇(10)

2數控技術的特點

數控技術(NumericalControl),即采用電腦程序控制機器的方法,按工作人員事先編好的程式對機械零件進行加工的過程,簡單地說就是用數字化信號對設備運行過程等進行控制的一種先進的自動化技術,是典型的機械與電子計算機相結合的機電一體化科技。從誕生之初到現在,經歷了電子數控技術、晶體管數控技術、中小規模IC數控技術、小型計算機數控技術以及微處理器數控技術五個階段。數控技術在我國開發應用是從1958年開始,改革開放之后,數控技術在機械制造行業的應用才逐漸步入正軌,主要模式是引進國外的先進數控技術,通過消化吸收后,投入生產,總的來說,我國數控技術在制造行業的應用有了質的飛躍,許多機械制造企業從傳統產品轉變為數控化產品,促進了經濟的發展。現階段,由于數控技術是一種采用計算機數字實現數字程序控制的技術,所以數控技術也可以成為計算機數控技術。電子計算機數控技術采用軟件模塊化的體系結構,使輸入數據的存儲、處理、運算、邏輯判斷等各種控制機能得以實現,使計算機按事先存儲的控制程序來執行對設備的控制功能,顯示了數控技術優良的性能,具有較高的性價比(。圖一為完整的數控工作示意圖)總的來說,數控技術的進步與發展與計算機的發展息息相關,在數控技術的發展過程中起著基礎性作用,當然數控技術的發展也離不開各種輔助技術的進步,比如說傳感檢測技術、光電技術、機械制造術以及通訊技術等。數控技術是實現機械制造自動化過程的基礎,是現今集成制造系統的重要組成部分,在美國、日本和德國等發達國家,將數控技術應用到機床改造與生產線量產上,境地了機械制造企業的生產成本,并有效地將機械設備的功能、效率以及產品質量提升到新的高度,使傳統的機械制造業發生了極其深刻的變化。

3數控技術在機械制造中的具體應用

隨著信息技術、網絡技術以及自動化技術的不斷發展,數控技術與機械制造行業的結合越來越有效,通過計算機操作平臺可以全面掌控生產產品的各項指標與基本參數,并為新產品的研發與現有產品的性能完善提供技術支持,數控技術與機械制造行業的融合,拓寬了機械制造業的范圍,帶動了經濟發展。數控技術的應用范圍也較為廣泛,以下為數控技術在機械制造行業的具體應用:

3.1數控技術在煤礦機械中的應用

我國國土面積較大,各種資源比較豐富,煤炭資源更是儲量大,在我國的能源系統中占據重要地位,所以如何有效開發利用煤炭資源是我國煤機企業的主要任務。企業設備自動化程度是工業化水平的象征,在市場競爭較為激烈的大環境下,煤機企業不斷提升勞動效率、降低生產成本才能處于不敗之地,長久發展。根據煤礦企業的生產環境以及自身特點,不適合使用大型的機床設備,更不適合投入大量的資金購置設備,所以煤炭企業可以利用現有型號的加工機床,改裝成加工精度等級較高,性能較好的設備,有效地開采、加工煤礦資源。當然煤機企業充分利用現有機床產品等設備資源,并不斷改造提升機床的易操作性,提升其功能和精度,不斷滿足較高生產環境的設備要求,提升生產效率,最終實現投入少、效率高、設備應用率高的目的,不斷促進煤炭企業的發展。

3.2數控技術在汽車工業中的應用

近年來,汽車行業的發展可以說是較為迅猛的,汽車制造、零部件加工等等都隨之發展,數控技術的出現,對汽車制造業來說,是一項福利,加快了復雜零部件的制造,減少了人力,提升了效率。現階段,汽車行業對零部件和車身的要求逐漸提高,為了滿足生產需求以及市場需要,各種機械設備也不斷朝著精密化、自動化的方向發展。例如激光數控檢測技術的應用,激光檢測技術具有精度高、適用性強、可靠性高等優點,比如,激光檢測技術可以應用到測量尺寸上,用激光對汽車的曲軸、凸輪軸、閥座等零件的直線度、長度、垂直度、密度等測量,所有尺寸的分辨率可達1μm,重復精度0.2μm,精確性非常高(。圖二為汽車工業中采用激光技術加工的部分零件表)數控技術應用到汽車工業上,可以提高產品生產效率及產品質量。例如美國Ford汽車公司和Ingersoll機床公司合作研制成HVM800型臥式加工設備,并采用高速電主軸和直線電機,主軸最高轉速為24000r/min,工作臺最大進給達7612m/min,可以理解為不到1s工作臺可行程1m,瞬間完成一個工作行程。在汽車工業的今后發展過程中離不開數控技術,二者的結合會越來越融洽。

3.3數控技術在工業生產中的有效運用

在工業生產的范疇中,機械設備是基礎,主要由控制系統、驅動系統及執行系統構成。在現代工業在生產中,有些生產環境較為惡劣,人工操作難度大,也不能滿足生產要求,造成人力資源浪費,甚至會發生工傷安全事故等等,所以應引進先進的生產技術實現自動化生產。數控技術在工業上的應用,有效地改善了這些情況,生產效率得到了提升,工作人員的人身安全也得到了保障。除此之外,數控技術也具有監管功能,在實際生產過程中,一旦發現操作錯誤,信息就會立刻經過傳感器輸送到控制單元,對錯誤操作進行提示,并采用一定的措施進行保護,從而實現正常化生產。

3.4數控技術在機械設備上的有效運用

在機械制造行業中先進的設備居于核心地位,機械設備是機械制造的重要組成部分,是機械制造的靈魂,在機械生產領域的地位是無可替代的,數控技術的發現應用,使得機械制造行業實現了數字化及自動化發展,實現了機電一體化。面對現代機電一體化的要求,機械制造業必須具有具備控制能力的數控機床設備。在機床上運用數控技術,主要依靠代碼,其可以將產品生產的各類數據儲存在介質中,之后發出指令,傳達到控制系統,最終實現對整個機床生產的控制,是電腦機械相結合的產物,通過軟件設置來控制主軸速度變化、選擇刀具、啟動冷卻泵等各種繁雜的操作。數控技術在在機械設備上的應用,促進了各個行業的發展,提升了生產效率,實現了批量化生產,在經濟發展中也起到了推動作用。(圖三為激光檢測系統原理結構圖)(圖三激光檢測系統原理結構圖)

4數控技術在機械制造中的應用的發展前景

數控技術的優越性能在機械制造領域很好的發揮出來,無論是最開始的封閉式技術,還是現代的開放式計算機數控技術,數控技術很好的發揮了他的優越性能。在以后的發展過程中,數控技術也將逐步提高其自動化和智能化的性能,更好的提升工作效率,適應市場需求。數控技術在機械制造中發展應用前期,我們并沒有注重專業化需求,無論從技術上、管理上、人才選取上我們都應專業化,最終實現產品專業化的目的。提升我國制造裝備行業的綜合競爭能力,實現機械設備產業化發展,滿足國家的戰略需求,促進國民經濟發展,實現制造行業飛速發展,不斷提高我國的工業發展實力。

上一篇: 網絡管理技術 下一篇: 財稅法論文
相關精選
相關期刊
主站蜘蛛池模板: 罗山县| 剑阁县| 信阳市| 邳州市| 景谷| 江口县| 神池县| 天等县| 体育| 泰顺县| 宝兴县| 大埔区| 平阳县| 龙海市| 澄迈县| 万宁市| 筠连县| 中宁县| 温泉县| 合作市| 朝阳区| 林西县| 永春县| 平江县| 沈丘县| 广宁县| 石狮市| 铁力市| 龙南县| 寿光市| 沂源县| 章丘市| 凉城县| 阿荣旗| 子洲县| 吉木萨尔县| 云浮市| 龙川县| 涡阳县| 北安市| 葵青区|