時間:2023-11-16 10:51:29
序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇生物醫學測量技術范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。
【Abstract】In order to strengthen the electronic engineering technology training for Biomedical Engineering students, the Biomedical Electronics experiment course was designed for the students. The biological potential amplifier was selected as the experiment subject; In the experiment, student will be required to combine the simulation based on the electronic design automation software and practical operation to complete the design work of the biological potential amplifier, verify its function, and measure its important performance; the experiment was arranged in the early stage of the theoretical courses. Practice shows that the students have a more depth understanding of the characteristics of different methods in electronic engineering technology through the training of biomedical electronics experiments. Therefore, the curriculum design of the experiment is successful.
【Key words】Biomedical Engineering; Biomedical Electronics; Biological potential amplifier;Design automation
0 引言
生物醫學工程專業涉及多種學科和技術,具有很強的綜合性[1];但與此同時,該專業的本科生培養工作也具有很高的難度,原因就在于學生學習的內容多而不精,在擇業時常常無法體現出能力優勢。因此,從培養生物醫學工程專業本科生的角度而言,應該在對學生進行綜合素質培養的同時、加強特定專業技能的訓練,為學生的就業和繼續深造打下良好的專業基礎[2]。
醫學電子儀器方式是上海理工大學生物醫學工程專業的一個重要方向,在課程設置上,專注于培養學生的電子工程技術[3]。這其中,生物醫學電子學[4]是生物醫學工程專業的重要專業課程之一,其教學目的是讓學生掌握醫學電子儀器中帶有共性的電子器件、電子線路及電子學設計方法,因此是引導學生學習將電子工程技術應用于生物醫學工程專業的重要環節。生物醫學電子學實驗是該課程的配套實驗,目的是在于通過有代表性的實驗課題,引導學生學以致用、將課堂內容融會貫通于實踐之中。因此,生物醫學電子學實驗是生物醫學工程專業的一門重要實驗,需要進行慎重的實驗選題、認真的實驗設計和細致的實驗安排。為此,進行了相關的課程設計和實踐工作,詳述如下。
1 課程設計思想
上海理工大學生物醫學工程專業的生物醫學電子學實驗被安排于第五學期,和生物醫學電子學理論課平行設置。此前,學生已經通過電路原理、模擬電子技術基礎、數字電子技術基礎和電子技術技能訓練等課程的培養,具備了一定的電子工程技術基礎。生物醫學電子學實驗的總課時為16學時,在有限的課時內,讓學生得到最大程度的專業訓練,具有一定難度。在此背景下,展開生物醫學電子學實驗的課程設計工作。
首先要解決的問題是實驗選題。生物醫學電子學實驗的選題,應該能夠突出生物醫學電子學的特色,具有代表性。經過研究,多個生物醫學電子學的相關教材中,都將生物電位放大器(Biopotential Amplifier),即儀表放大器(instrumentation amplifier),放在了相當重要的位置上[5]。生物電位放大器,是用于放大心電、肌電和腦電等信號的專用放大器;這些信號具有的特點包括:由生物體內的電活動產生、屬于微弱的差分信號、非常容易被更加強烈的共模噪聲淹沒;而生物電位放大器具有很好的共模抑止特性,最適于放大這些存在于強烈共模噪聲背景下的微弱差分信號[6];因此,生物電位放大器在生物醫學電子學中占有重要地位,以生物電位放大器為主題開展生物醫學電子學實驗,不僅具有代表性,而且能夠引導學生在前期的課程基礎上有所提高。
其次要解決的問題是實驗設計。圍繞生物電位放大器這個主題開展實驗設計工作,需要使實驗具有一定深度,但同時又要保證大部分同學有能力在限定的課時內完成任務。經過反復論證設計,最終決定生物電位放大器相關實驗由兩部分組成:基于電子設計自動化(Electronic design automation, EDA)軟件的設計仿真實驗和動手實踐實驗。在第一部分實驗中:學生基于LM324[7]完成生物電位放大器的設計工作;仿真驗證設計結果;仿真測試其差模增益幅頻響應曲線[8]。在第二部分實驗中:學生在面包板上動手搭建生物電位放大器;并在實驗室中,使用各種設備測試差模增益幅頻響應曲線。上述實驗設計的優點在于:通過設計仿真工作,讓同學們盡快掌握生物電位放大器的原理,同時,基于EDA軟件開展電路工作,符合發展趨勢[9];通過設計仿真和動手實踐相結合,互為驗證,比較差異,容易引發思考,更加深刻的體會電子工程技術中不同手段的特點;對生物電位放大器的重要參數進行仿真、測量和總結,有利于學生們在更深地程度上掌握生物電位放大器。
最后要解決的問題是實驗安排。由于生物醫學電子學實驗是生物醫學電子學理論課程的配套實驗,因此在進度安排上必須要統籌考慮;此外,實驗設計決定了生物醫學電子學實驗適宜集中精力完成,而不是分散到每周進行,集中完成實驗能夠取得更好的效果。為此,在生物醫學電子學理論課程中,生物電位放大器相關內容被安排在課程的早期進行講解;緊隨其后,利用課余和周末時間,在一周內完成生物醫學電子學實驗。這樣安排的好處是:學生能夠在課程的開始階段,就體會到了如何將理論應用于實際,引發學習興趣。
2 實驗內容展示
下面以一位學生的實驗情況為例,說明課程設計效果。
1)生物電位放大器的設計和仿真
a)生物電位放大器的設計:
基于lm324設計一個基于三運放的儀表放大器,用于生物電位測量,仿真電路原理圖如圖1所示。增益公式如公式(1)所示,其中:R1、R2、R5和R6都選用10KΩ的電阻;R3和R4都選用24KΩ的電阻;Rg為增益電阻,當Rg為無窮大時,(這里選用600MΩ),增益約為1倍,當Rg為5.6kΩ時,增益約為10倍,當Rg為470時,增益約為100倍,當Rg為47時,增益約為1000倍。
A=(2*R3/Rg+1)*R2/R1(1)
b)對所設計的生物電位放大器進行仿真,驗證其功能
如圖1所示:使用+Vdm/2和-Vdm/2兩個信號源組合成模擬心電信號的差模輸入信號Vdm,峰值為10mV,頻率為18Hz;使用Vcm仿真工頻干擾產生的共模信號,峰值為500mV,頻率為50Hz。取Rg為5.6kΩ,輸入、輸出信號對比圖如圖2所示。由圖可見,差模輸入信號被放大約10倍,但50Hz共模輸入信號在輸出信號中全無蹤跡,因此該生物電位放大器正確的實現了預期目的:放大差模信號、抑制共模信號。
c)對所設計的生物電位放大器進行仿真,測量其性能,頻率范圍設定在0.1Hz-5MHz之間:
對圖1的生物電位放大器進行仿真,測量其差模增益頻率響應,如圖3所示。圖中從上到下的短劃線、虛線、點劃線和實線分別代表差模增益約為1000倍、100倍、10倍和1倍時的幅頻響應。由圖3可見,放大倍數越小時的幅頻響應截止頻率約高:差模增益約1000倍時,幅頻響應在1kHz左右就開始截止;差模增益約100倍時,幅頻響應在10kHz左右開始截止;差模增益約10倍時,幅頻響應在100kHz左右開始截止;差模增益約1倍時,幅頻響應在1MHz左右開始截止。
2)生物電位放大器的實踐實驗
動手實現所設計的生物電位放大器。使用的器材包括:面包板、lm324、10KΩ電阻、24KΩ電阻、5.6KΩ電阻、470Ω電阻、47Ω電阻和導線等,電阻均為5%精度;使用的儀器包括SPF05數字合成函數信號發生器、DS1000數字示波器和電源。測試所得到差模增益頻響曲線如圖4所示。其中,差模增益隨頻率變化的趨勢與仿真所得的結果基本類似,除了差模增益為1時的截止頻率出現在了100kHz左右。
3)實驗分析
相比于實際實現的生物電位放大器,仿真實驗而得的結果具有更好、更理想的特點。其原因在于:仿真時避免了器件差異造成的影響,需要匹配的電阻和運放可以做到完全匹配,同時也避免了人為測量失誤造成的影響,因此可以排除隨機誤差。仿真實驗更容易實施,對于理解理論課內容大有裨益;但動手實驗更加真實,且可以提高動手能力、積累實驗經驗,對于理解真實情況、解決實際問題非常有好處;兩者可以互為補充。
3 結論
為了避免生物醫學工程專業本科生培養博而不精的問題,在對學生進行綜合素質培養的同時,應該加強特定專業技能的訓練;上海理工大學生物醫學工程專業醫學電子儀器方向在課程設置上專注于培養學生的電子工程技術;生物醫學電子學實驗作為該專業的重要課程生物醫學電子學的配套實驗,在引導學生“入門”、引發專業興趣等方面,具有重要作用;為此,對該實驗進行了相關的課程設計工作。實踐表明,通過生物醫學電子學實驗的訓練,學生對專業的認知程度、對技術的理解程度和對知識的掌握程度,都得到了提升,這些能力的加強有助于學生對其它專業課程的學習和掌握。因此,該實驗的課程設計是成功的,今后將沿此方向繼續推進。
【參考文獻】
[1]尤富生.麻省理工學院教育理念及對生物醫學工程專業的啟示[J].醫療衛生裝備,2016,37(1).
[2]趙曉明.生物醫學電子綜合實驗系統設計[J].實驗技術與管理,2013,30(7).
[3]周宇.醫學儀器設計原理課程構建的心電檢測系統[J].實驗室研究與探索,2012(2).
[4]馬長升.生物醫學電子學的回顧與展望[J].中國醫療設備,2008,23(3).
[5]Webster, J.G.Medical Instrumentation: Application and Design[M]. 3rd ed. John Wiley & Sons,2009.
[6]Franco, S.基于運算放大器和模擬集成電路的電路設計[M].2ed.西安交通大學出版社,2009.
計算機技術在生物醫學領域中的廣泛應用逐漸成為必然趨勢,能夠及時完成醫學圖像的生成與處理、生物信號的測量及傳輸等工作。在心電監護中的應用則是通過計算機技術處理生物信號,從而及時有效的對檢測結果處理并分析,同時針對患者的病情快速診斷,有助于提高治療效率,特別是在遠程心電監護領域中的應用前景十分廣闊。
1 計算機技術在生物醫學領域的應用分析
1.1 控制與測量
計算機技術屬于現階段生物醫學中的重要技術,通過計算機可以對人體的生命特征作出生物量、化學量及物理量等多方面的檢測與分析。計算機的控制技術在生物電子學中的發展值得關注,最具代表性的就是生物傳感器的研究,現階段已經向著微型化與集成化的方向發展;同時還包括對微弱生物信號的檢測、抗干擾的研究、植入式測量與控制系統的研究、生物遙測與遙控技術的研究等。
1.2 成像與處理
伴隨著新型計算機的出現,X-CT的問世象征著電子計算機技術和傳統醫療技術的相互融合,由此推動了現階段醫學領域影像診斷技術發生的革命性變革。生物醫學圖像成像技術包含著電阻抗斷層成像技術、電生理成像技術、光學CT、三維圖像分析等。
1.3 監護與監測
監護系統主要是由傳感器、信號處理器及診斷與治療系統組成,其中也有相應的記錄報警裝置。計算機檢測系統可以把對患者的部分信息參數提供給醫生,使他們獲取到相應的醫療方案,并以此作為重要的依據。監護技術中涉及到醫學微弱信號的檢測與提取技術、信號的處理與特征提取技術、醫學信號的綜合分析技術。
1.4 生物芯片
生物芯片在二十世紀八十年代提出,最初的定義為分子電子器件。主要是將生物的活性分子和有機功能分子組建出的微小單元實現對生物信息的收集、存儲和分析的生物計算機。在二十世紀九十年展迅速,生物芯片可以匯集大量的信息資料,從而進行生化反應,對蛋白分子、活體細胞等進行分析并處理。
1.5 微型醫療器械
微型醫療器械主要是以毫米為測量單位,此類設備用于清除動脈阻塞,可以及時殺死癌細胞,對體內病變進行監視等,比如水槌式微型機械、微型鑷子及二極管激光等。
2 計算機技術在心電監護中的應用分析
心電信號是人類最早研究并應用至臨床醫學上的生物電信號,因此屬于當前生物醫學領域中重要的研究對象。當前,心電監護系統的要求不僅僅停留于顯示病人的心電波形,更加關注的是通過計算機的處理和分析功能,有效的整合各種生理參數的檢測結果,讓醫務人員及時的作出相應判斷,對心電監護的實時性與有效性理智分析,從而提升準確的分析能力,讓計算機技術為處理核心的多種心電監護儀器成為研究重點。
2.1 分類
遠程心電監護就是利用計算機技術、通信技術及電子技術等實現心電圖的監測,從發展歷程上分析,遠程心電監護系統包含著Holter系統、TTM系統、心電遙測監護系統。其中,心電遙測監護系統能夠提升檢測的實時性,但是會抑制病人的某些活動,并且難以進行長時間的監護。即便心信號可以實時的反映到遙測分析系統中,但是受到通訊、醫療電子儀器廣泛應用的影響,使其抗干擾能力較差。
2.2 模式
當前,無線遙測心電監護主要是建立在紅外、GSM及GPRS等無線模式上,伴隨著移動通信技術的蓬勃發展,實現了人們大范圍的通訊便利,建立在移動通信技術基礎之上的遠程無線心電監護也備受關注,成為了當前遠程心電監護系統的研究重點,特別是目前第四代移動通信技術的發展。建立在GSM移動通信網GPRS功能的遠程移動心電監護系統,可以及時對心電信號進行監測,同時還能實現網絡共享,體現出良好的臨床應用價值。
2.3 問題
現階段,無線遙測心電監護雖然具備良好的應用前景,但是存在的諸多問題不容忽視。比如,對于某些具有突發性和危險性的心臟病患者,系統的時效性發揮不明顯,導致救護不及時。這就需要系統具備最基本的實時自動分析功能,嚴格杜絕漏檢、誤判等弊病。伴隨著科學技術的進步與發展,醫學技術也在進一步提升,無線遙測產品的市場前景良好,因此無線遙測技術成為了監護產品競爭中的重要因素。應該采取先進的無線射頻技術,通過開放統一的網絡傳送病人的相關信息,在保障性能的同時,提升系統的通用性、兼容性、抗干擾性,由此推動遠程監護、遠程醫療的應用。新型的嵌入式系統實現了先進計算機技術與心電監護的融合,在軟硬件的高效設計下,提升了系統的便捷性、高性能,適合用于對成本、功耗、體積等方面嚴格要求的便攜式無線遙測監護設備,在現代社會,逐漸成為便攜式多參數監護儀應用領域中的研究重點。
3 結語
計算機技術在當代生物醫學和心電監護中的應用前景良好,大大提升診療效率的同時,滿足了當前對于實時性的需要。伴隨著計算機技術的蓬勃發展,生物醫學和心電監護更好的迎合了時代的發展需求,通過嵌入式、無線通信技術、網絡技術等支撐作用,促使未來監護系統的市場主流向著模塊化、網絡化、人性化的方向發展。
參考文獻
[1]孫紅敏,姜楠楠,李想.基于文檔集的生物信息挖掘模型研究[J].計算機工程與應用,2016(24):102-106+188.
[2]孫曉,孫重遠,任福繼.基于深層條件隨機場的生物醫學命名實體識別[J].模式識別與人工智能,2016(11):997-1008.
一 引言
生物醫學光學與光子學是光學或者說光子學現展的一個分支學科。由于光學與光子學是具有極強應用背景的學科,所以“生物醫學光子技術”這一多學科交叉的新興研究領域在20世紀末葉也隨之應運而生。
激光技術作為一項重大的科技成就,為研究生命科技和疾病的發生、發展開辟了新的途徑,為保健和臨床診療提供了嶄新的手段,推動人類科學技術進入新的發展階段。
可以把與光的產生、傳播、操縱、探測和利用有關的物理現象和技術包括在內的科學及工程籠統地簡稱為光學。用光學最廣的含義來概括各研究領域及其相關交叉分支時必然包括了激光和光電子技術。運用光學及其技術研究光與人體組織的相互作用問題可歸之于“組織光學”范疇。它是研究光輻射能量在生物組織體內的傳播規律以及有關組織光學特性的測量方法的一門新興交叉學科,是光醫學(光診斷和光治療)的理論基礎。經過40多年的發展,激光與光電子技術在人類的保健、醫療以及生命科學中產生了很大影響。
在醫學領域,光電子技術使各種新療法,包括從激光心臟手術到用光學圖像系統的關節內窺鏡進行微損膝關節修復等,成為可能或得以實現。目前,科學家們正致力于研究光學技術在非侵入式診斷和檢測上的應用,如乳腺癌的早期探查、糖尿病患者葡萄糖的“無針”監控等。激光在醫學上的最早應用雖然集中在治療方面,然而在80年代初期起便開始了光診斷技術的探索。指望無損害地獲得診斷信息是這些研究的驅動力之一,其中在物理學中高度發展的光譜技術有望在診斷醫學中得到應用。利用光纖把光傳輸到身體內部的能力,可以完成膀胱、結腸和肺等器官的檢查。隨著醫學診斷方法向無損化方向發展,利用光電子學技術對組織體進行鑒別和診斷,有可能更早期、更精確地診斷各種疾病。近年來,人們開始把這種診斷方法稱之為“光活檢”。
隨著現代醫學模式的轉變、健康概念的更新以及人民生活水平的提高,從20世紀80年代后期起,“激光美容術”在世界各地包括在我國各大城市逐漸地開展。保健美容是光電子技術應用越來越活躍的領域。激光技術應用于美容外科的起步較早,使得一些在美容整形外科很棘手的疾病,如太田痣、血管瘤等治療變得簡易有效。到20世紀末,人們又開發了一種稱為光子嫩膚術的新美容技術。它基于選擇性的光熱解作用,有效地改善肌膚的質地和彈性,達到美容的效果。之所以用激光或強脈沖光進行非消融性的嫩膚或治療越來越流行,是因為這類手術具有無損、不必住院、幾乎無副作用和無疼痛,從而使受術者容易接受的優點。
國家自然科學基金委員會先后二次在“光子學與光子技術”以及“生物醫學光學”優先資助領域戰略研究報告中分別指出:近年來生物醫學光學與光子學的迅猛興起,令人矚目,并因而引發出一門新興的學科-生物醫學光子學(Biomedophotonics)。研究報告選定了近期優先研究領域包括生物光子學、醫學光子學基礎研究、醫學臨床的光學診斷和激光醫學中的重要課題等諸方面。
福建師范大學在1974年成立了“醫用激光及其應用技術”研究組,以激光與光電子技術為基礎,圍繞激光醫學應用的核心技術開展研究與開發。至二十世紀九十年代,跟隨該領域的國際走向,轉入激光醫學技術的基礎理論研究工作,在國內率先開展了生物組織光學與光劑量學的研究。伴隨研究工作的深入開展,逐步形成了我們有特色的若干前沿研究方向,并于2005年獲準立項建設醫學光電科學與技術教育部重點實驗室。
二 國內外現狀
光學在生命科學中的應用,在經歷了一個緩慢的發展階段后,由于激光與新穎的光子技術的介入,進入了一個迅速發展的新階段。與光學有關的技術沖擊著人類健康領域,正在改變著藥物療法和常規手術的實施手段,并為醫療診斷提供了革命性的新方法。特別在近十多年來,與蓬勃的學術研究活動相對應,國際上出現了專門的研究性學術雜志,如:Laurin 出版公司于1991年發行了“Bio-Photonics”新雜志。美國光學學會重要的會刊之一“Applied Optics”也于1996年將其“Optical Technology”欄目擴充為“ Optical Technology and Biomedical Optics”,并定期出版有關生物醫學光學的論文專集。SPIE亦于1996年創辦了期刊Journal of Biomedical Optics,且聲譽日隆。到2004年,該刊的SCI影響因子已達3.541。當前,發達國家普遍對生物醫學光子學學科給予了高度重視。例如,在美國國家衛生研究院(NIH)新成立的國家生物醫學影像與生物工程研究所(NIBIB)中,生物醫學光子學也成為其主要資助的領域。近三年中,美國NIH已經召開過4次研討會,認為新的在體生物光子學方法可用于癌癥和其它疾病的早期檢測、診斷和治療。新一代的在體光學成像技術正處在從實驗室轉向癌癥臨床應用的重要時刻。在NIH的支持下,美國國家癌癥研究所(NCI)正在計劃5年投資1800萬美元,招標建立“在體光學成像和/或光譜技術轉化研究網絡(NTROI)”,其研究內容主要包括:光學成像對比度的產生機理、在體光學成像技術與方法、臨床監測、新光學成像方法的驗證、系統研制與集成等五個方面。2000年底,在美國NIBIB的首批支持項目中,光學成像方法約占30%。2000年7月,美國NIH投資2000萬美元,開展小動物成像方法項目(SAIRPs)研究,受到生命科學界的高度關注,其中光學成像方法是研究重點之一。美國國家科學基金會(NSF)在2000-2002年了4次關于生物醫學光子學研究(Biophotonics Partnership Initiative)的招標指南?!?.11”事件后,美國國防部啟動了“應激狀態下的認知活動”(Cognition under stress)項目,采用的研究方法就是光學成像技術。美國加州大學Davis分校于2002年10月宣布:未來10年內,將投資5200萬美元建立生物醫學光子學科學技術中心(The Center for Biophotonics Science and Technology),其中4000萬美元由NSF支持。在學術交流活動方面,國際光學界規模最大西部光子學會議(Photonics West)上,每年的四個大分會之一即是生物醫學光學會議(BiOS),論文均超過大會總數的三分之一,如,2003年關于BiOS的專題為19個,占整個會議的19/52=36.5%;2004年,IBOS會議專題為20個,占整個會議的20/55=36.4%。另外,每年還召開歐洲生物醫學光子學會議。除疾病早期診斷、生理參數監測外,在基因表達、蛋白質―蛋白質相互作用、新藥研發和藥效評價等研究中,特別是近年來的Science, Nature, PNAS等國際權威刊物發表的論文表明,光子學技術也正在發揮至關重要的作用。在某些領域,如眼科,光學和激光技術已成熟地應用于臨床實踐。激光還使治療腎結石和皮膚病的新療法得以實現,并以最小的無損或微損療法代替外科手術,如膝關節的修復?,F在,用激光技術和光激勵的藥物相結合可治好某些癌癥。以光學診斷技術為基礎的流動血細胞測量儀可用于監測愛滋病患者體內的病毒攜帶量。還有一些光學技術正處于無損醫學應用的試驗階段,包括控制糖尿病所進行的無損血糖監測和乳腺癌的早期診斷等。光學技術還為生物學研究提供了新的手段,如人體內部造影、測量、分析和處理等。共焦激光掃描顯微鏡能將詳細的生物結構的三維圖象展現出來,在亞細胞層次監測化學組成和蛋白質相互作用空間和時間特征。以雙光子激發熒光技術為代表的非線性成像方法,不僅可以改善熒光成像方法的探測深度、降低對生物體的損傷,而且還開辟了在細胞內進行高度定位的光化學療法。近場技術將分辨率提高到衍射極限以上,可以探測細胞膜上生物分子的相互作用、離子通道等等。激光器已成為確定DNA化學結構排序系統的關鍵組成部分。光學在生物技術方面的其它應用還包括采用“DNA芯片”的高級復雜系統,和采用傳輸探針的簡單系統。激光鉗提供了一種在顯微鏡下方能看見的一種新奇的、前所未有的操作方法,能夠在生物環境中實現細胞或微觀粒子的操縱與控制,或在10-12m范圍內實現力學參數的測量。結合光子學和納米技術已經可以探測細胞機械活動,揭示細胞水平上隱秘的生命過程,利用納米器件甚至可以檢測和操縱原子和分子,這可以應用在細胞水平的醫學領域。高技術的進步,如:微芯片極大地加速了生物光子學的發展進程。集成電路、傳感器元件和相連電路的小型化、集成化促使在體和體外測量分子、組織和器官圖像成為可能。許多生物醫學光子學技術已經在臨床上應用于早期疾病監測或生理參量的測量,如血壓,血液化學,pH,溫度,或測量病理生物體或臨床上有重要意義的生化物種的存在與否。描述不同光譜特性(如熒光,散射,反射和光學相干成像)的各種光學概念出現在功能成像的重要領域。從大腦到竇體再到腹部,精確導位和追蹤,對于精確定位醫療儀器在三維手術空間的位置具有重要的作用?;诜肿犹结樀墓庾蛹夹g可以識別發生疾病時產生的分子報警,將真正實現令人激動的、個人的、分子水平的醫學。
我國的研究基礎與條件雖然相對落后,研究投入不足,但生物醫學光子學是一門正在興起和不斷發展的學科,在這一新興交叉學科上國內外處于一個起跑線上。近年來,在國家自然科學基金委、省部委以及其它基金項目的資助下,我國在生物醫學光子學的研究中取得了很大的進展,尤其是2000年第152次主題為 “生物醫學光子學與醫學成像若干前沿問題”、第217次主題為“生物分子光子學”的香山會議后,有許多學校和科研單位開展了生物醫學光子學的研究工作,并初步建成了幾個具有代表性的、具有自己研究特色和明確科研方向的研究機構或實驗室,并在生物醫學光學成像(如OCT、光聲光譜成像、雙光子激發熒光成像、二次諧波成像、光學層析成像等)、組織光學理論及光子醫學診斷、分子光子學(包括成像與分析)、生物醫學光譜、X射線相襯成像、光學功能成像、認知光學成像、PDT光劑量學、高時空譜探測技術及儀器研究等方面取得了顯著的研究成果。發表了許多研究論文,申請了許多發明專利,有些已經獲得產業化。國家自然科學基金委員會生命科學部與信息科學部聯合發起并承辦的全國光子生物學與光子醫學學術研討會已經舉辦了六屆。這對我國生物醫學光子學學科的發展起到了積極的推動作用。在我國近年所召開的亞太地區光子學會議中,有關生物醫學光子學的內容已大幅增加,成為主要的研討專題。我國的生物醫學光子學研究和學術活動也方興未艾,呈現與國際同步的態勢。在基礎研究、應用基礎研究以及對新技術的掌握方面跟蹤國際先進水平,但國內科研經費的投入相對較小,科研隊伍規模不大,原創性的科研成果與國外有較大差距。和國外的發展水平相比,我國的生物醫學光子學發展還存在以下問題:
(1)盡管從事生物醫學光子學的科研單位很多,但取得突破性、創新性的研究成果很少,主要是由于我們的科研隊伍在組織、組成上還不合理,過于分散、開展的內容繁雜,難以將有限的資金投入到一些有利于國計民生的及上水平的研究方向上;另外許多單位的研究重復,缺乏合作,導致水平低下;
(2)和國外相比,研究經費無論在絕對值還是相對值上均投入十分不夠;
(3)缺乏研究成果產業化的引導機制。
三 醫學光電科學與技術(福建師范大學)教育部重點實驗室概況
“醫學光電科學與技術”教育部重點實驗室設立于福建師范大學物理與光電信息科技學院(激光與光電子技術研究所)內,作為本學科開展科研研究和實施建設與發展的一個基礎平臺。實驗室已有30年發展歷史,1973年成立福建師范學院物理系激光實驗室,1984年成為福建師范大學激光研究所實驗室,1995年為福建省首期211重點學科《應用光子學》學科實驗室,2003年5月26日經福建省科技廳批準成立“光子技術福建省重點實驗室”,2005年7月28日經教育部批準立項建設教育部重點實驗室。實驗室座落于福建師范大學長安山校園內。
30年多來,實驗室在生物組織光學、醫學光譜與光學成像技術、光診斷及光診療技術、信息技術光學及其生物醫學應用等四個主要方向上努力開拓,承擔并完成了數十項國家與省部重點、重大項目課題,取得一批代表我國本領域研究水平的科研成果,其中十五以來獲省部級科技進步一等獎1項,二等獎2項,三等獎2項,其它省級以上獎勵12項。在國內外重要刊物發表的論文以及被SCI、EI收錄的論文均超過100篇。
實驗室目前承擔著國家與省級重要課題50余項,科研經費超過2000萬元。其中國家自然科學基金項目11項,國家教育部、科技部、衛生部項目9項,福建省科技重大專項1項,其它省級重要項目近30項。
中科院半導體研究所原所長王啟明院士任重點實驗室學術委員會主任,副主任由黃尚廉院士和謝樹森教授擔任。另有九位國內外著名的激光、光電子與醫學學科交叉的院士、專家或資深教授擔任委員,其中海外委員兩人。他們規劃、指導并檢查本學科實驗室的建設與發展。
重點實驗室主要學術帶頭人、實驗室學術委員會常務副主任謝樹森教授是中國光學學會副理事長、福建省光學學會理事長、國家有突出貢獻的中青年專家、光學工程專業博導、全國勞動模范,是我國醫學光電科學與技術領域的學術帶頭人與開拓者。實驗室主任陳榮教授、副主任李暉教授均為國務院特殊津貼專家,實驗室常務副主任陳建新教授來自于北京大學的優秀博士后研究員。重點實驗室擁有穩定的可持續開展高水平科研的學術梯隊,其中的中青年學術帶頭人或學術骨干包括1位閩江學者特聘教授、1位福建師范大學特聘教授、3位國務院特殊津貼專家、2位全國優秀教師、2位福建省優秀教師和15位博士。
重點實驗室與國內外學術界建立了并保持著廣泛的聯系。重點實驗室已設立面向國內外的開放課題基金。已批準并實施來自浙江大學、廈門大學、上海光機所、西安交通大學、華南師范大學、天津醫科大學、上海市激光醫學研究中心等單位知名學者的開放課題。
重點實驗室已具備良好的科研軟硬件環境。現有面積近5000平方米,儀器設備原值2500多萬元。重點實驗室各項管理制度健全。
“醫學光電科學與技術”重點實驗室,在我國現代科學技術領域特色鮮明,在我國相關學科處于領頭地位,有較大影響。重點實驗室建設將有力促進福建省科技創新能力建設,促使福建師范大學迅速向高水平、有特色、開放型的綜合性大學邁進。同時,重點實驗室的建設與發展將有力促進我國醫學光電科學與相關學科的發展,為廣大民眾的身心健康,為海峽西岸的科技、社會與經濟發展做出重大貢獻。
四 發展趨勢和展望
光子學及其技術已廣泛應用或滲透到生物科學和醫學的諸多方面,被科學界所認同和重視。生物醫學光學已經成為國際光學學科重要發展方向之一。生物醫學光子學的發展,將為現代醫學和生命科學帶進嶄新的時代。本學科的發展將繼續體現了多學科交叉的特點,研究領域涉及到了生物學、醫學、和光學,還有化學等不同大學科的方方面面。技術開發與臨床應用研究的結合將越來越密切。一般認為,光學領域未來發展的重點是將各種復雜的光學系統和技術更加廣泛地應用于保健和醫療。當今世界中,與光子學有關的技術沖擊著人類對生命體的認知及人類健康領域。基于現代激光與光電子技術的生物醫學光子學技術將為生命科學研究帶來具有原始性創新的重要科研成果,并可望形成有重大社會影響和經濟效益的產業。
在醫學領域,光子學技術正在改變著藥物療法和常規手術的實施手段,并為醫療診斷提供了新方法。在某些領域,如眼科,光學和激光技術已成熟地應用于臨床實踐。激光還使治療腎結石和皮膚病的新療法得以實現,并以無損或微損療法代替外科手術,如膝關節的修復。現在,用激光技術和光激勵的藥物相結合可治好某些癌癥。以光學診斷技術為基礎的流動血細胞測量儀可用于監測愛滋病患者體內的病毒攜帶量。還有一些光學技術正處于無損醫學應用的試驗階段,包括控制糖尿病所進行的無損血糖監測和乳腺癌的早期診斷等。
在基礎研究方面,研究重點在于從細胞,甚至是亞細胞尺度層次揭示病變組織與正常組織之間的差異,為新技術開發以及應用提供理論依據。另一方面,研究光與人體組織之間的相互作用以及所產生的光化學、光熱和光機械效應。在技術的應用方面,研究重點轉向比較各種技術中光源(相干光源/非相干光源、波長、功率密度、偏振性、連續/脈沖光源、脈沖持續時間等)和個體差異(年齡、性別、臨床癥狀、發病史、發病時間等)對診斷或治療結果的影響,在確定各種技術臨床適應癥的同時,進一步實用化各種技術。此外,還在不斷開發新的實用于不同疾病的診斷、治療和監測技術。
值得關注的是,國外從事“生物醫學光學”領域研究的高?;蜓芯繖C構中,來自大陸的中國學者的數量越來越多。這有助于使國內外的學術交流更加有效,并可以預期國內與國外在該領域的研究水平差距將不斷縮小。
今后若干年內醫學光電科技學科需關注的重大科學問題和優先研究領域如下:
(一)醫學光子學基礎
在組織光學方面,其中最主要的有光在組織體內傳播的特殊方式、組織光學性質的描述以及有關實驗技術的開發和完善等。組織光學是醫學光子技術的理論基礎。光在生物組織中的運動學(如光的傳播)問題和動力學(如光的探測)問題是研究的主要內容,目的是要研究生物組織的光學性質和確定某靶位單位面積上的光能流率。應優先解決測量技術和實驗精度的問題,利用近場光學顯微技術、光鑷技術測量活體組織的光學參量。在理論建模方面,建立生物組織中光的傳輸理論和數值模擬方法。具體開展的研究工作應包括:1)光在生物組織中傳輸理論:要用更復雜的理論來描述生物組織的光學性質以及光在其中的傳播行為。建立準確的組織光學模型,使之能反映生物組織空間結構及其尺寸分布情況、組織各個部分的散射與吸收特性以及折射率在一定條件下的變化情況;改造傳輸方程,使之適應新的條件,并能在某些情況下求出光在生物組織中傳輸的基本性質。2)光傳輸的蒙特卡羅模擬:繼續開發新的更為有效的算法以適應生物組織的多樣性和復雜性的要求。除了了解光在組織中的分布,還在探索從大量數字模擬中得到生物組織中光的宏觀分布與其光學性質基本參量之間的經驗關系。另外,發展非穩態的光傳輸的蒙特卡羅模擬方法也是一個重要的研究方向,從中可以獲得比穩態條件下更多的信息。
組織光學參數的測量方法和技術方面,尚未獲得人體各種組織的可靠實驗數據。發展和完善活體的無損檢測尤為重要。在這方面,時間分辨率與頻率分辨率的測量方法引人注目。
(二)醫學光子學光譜診斷技術
醫學光子學光譜(非成像)診斷技術實質上是利用從組織體反射、散射、發射出來的光,經過適當的放大、探測以及信號處理,來獲取組織內部的病變信息,從而達到診斷疾病的目的。
生物組織的自體熒光與藥物熒光光譜技術,內容涉及光敏劑的吸收譜、激發與發射熒光譜以及各種波長激光激發下正常組織與病變組織內源性熒光基團特征光譜等。現在人們所謂的特征熒光峰實際上只是卟啉分子的熒光峰??陀^和科學地判斷激光熒光光譜對腫瘤的診斷標準是十分必要的。目前,某些癌瘤的藥物熒光診斷已進入臨床試用,自體熒光的應用尚處于摸索之中。需要開展激光激發生物組織和細胞內物質的機理研究,探討激光誘發組織自體熒光與癌組織病理類型的相關性以及新型光敏劑的熒光譜、熒光產額和最佳激發波長等方面的研究,以期獲得極其穩定、可靠的特征數據,為診斷技術的發展提供科學依據。
近年來,拉曼光譜技術應用于醫學中已顯示出它在靈敏度、分辨率、無損傷等方面的優勢。應開發并完善重要醫學物質拉曼光譜數據庫,并使基于拉曼光譜分析的小型、高效、適用于體表與體內的醫用拉曼光譜儀和診斷儀將在醫學臨床獲得更廣泛的應用。
超快時間分辨光譜比穩態光譜在技術上更靈敏、更客觀和更具有選擇性。因此,將脈寬為ps、fs量級的超短激光脈沖光源用于醫學受到廣泛重視,其一,應發展超快時間分辨熒光光譜技術,用于測量生物組織及生物分子的熒光衰變時間,分析癌組織分子馳豫動力學性質等,為進一步研究自體熒光法診斷惡性腫瘤提供基礎數據;其二,應發展超快時間分辨漫反射(透射)光譜技術。以時域的角度測量組織的漫反射,從而間接確定組織的光學特征。這是一種全新的、適用于活體的、無損和實時的測量方法,為確知光與生物組織的相互作用,解決醫學光子學中基礎測量問題開辟一條新徑。
(三)醫學光子學成像診斷技術
發展出具有無輻射損傷、高分辨率、非侵入、實時、安全的光子學成像診斷技術,并具有經濟、小型、且能監測活體組織內部處于自然狀態化學成分等特點的醫療診斷設備。主要的醫學光子學成像診斷技術包括:
超快時間分辨成像技術:以超短脈沖激光作為光源,根據光脈沖在組織內傳播時的時間分辨特性,使用門控技術分離出漫反射脈沖中未被散射的所謂早期光,進行成像。正在研究的典型時間門有條紋照相機、克爾門、電子全息等。
散射成像技術:包括光子密度波散射層析成像、組織深度光譜測量以及復合成像等,利用紅外光源,光子密度波在生物組織中的穿透深度可達幾個毫米,在低散射的人腦組織中甚至可達30mm。
紅外熱成像:紅外熱成像是利用紅外探測器測量人體和動物的正常與病變組織的溫度差異來診斷病變及其位置,現已在醫學診斷中得到廣泛的應用,如乳腺腫瘤的診斷。
光學相干層析成像技術:一種非侵入式無損成像技術,并且可以與顯微鏡、手持探針、內窺鏡、醫用導管、腹腔鏡等相結合使用,從而具有廣闊的應用領域。而且,OCT能進行眾多功能成像,如分光鏡OCT、多普勒OCT、偏振OCT:也可以與眾多成像技術結合使用,如熒光、雙光子、二次諧波成像等技術。
熒光壽命成像:受超短光脈沖激發后,熒光團,包括自體熒光團如NADH、FAD等和外源熒光團,如有機熒光染料、熒光蛋白等,所發出熒光的壽命取決于熒光團的分子種類及其所處的微環境,如pH、離子濃度(如Ca2+、Na+等)、氧壓等,因此熒光壽命的測量和成像,有助于提供生物組織的功能信息。和內窺鏡結合,可用于胃癌、食道癌等疾病的早期診斷,是一種很有前途的具有高靈敏度、高特異性以及高診斷準確性的早期癌癥診斷方法。
光聲作用成像:利用超聲場在生物組織中的優良傳輸特性和激光在生物組織中的選擇性吸收特性,將超聲定位技術和光學高靈敏度檢測技術結合,以實現無損傷臨床醫學的結構和功能層析診斷。預期成像深度遠好于目前的光學成像方法,對于較厚生物組織成像及臨床應用特別具有吸引力,可為及早發現一些特殊病變提供一種無損、有效、高準確度的方法。
非線性光學成像:雙光子激發熒光顯微成像、二次諧波等成像技術由于具有三維高空間分辨率,對比度高、對生物組織的損傷小等優點,研究工作重點是擴展成像技術在生物醫學領域的應用范圍,重點解決研制小型化內窺型診斷設備所面臨的相關技術問題。
人體經絡的光學表征及其調控功能:已經用不少事實證明了經脈循行路線的現象,也初步顯示了人體體表沿十四經脈路線存在的紅外輻射軌跡。然而,至今未能用西醫的形態學或生理學方法證明它的存在,也不能明晰地闡明“經絡”的實質??梢岳靡寻l展的生物醫學光子學諸多成像技術為工具,研究這個具有中國特色的中醫學中的重大問題。
4.醫用激光治療技術(激光醫學)
強激光治療:是當前激光醫學中最成熟和最重要的領域。隨著新型醫用激光器的不時出現,如:鈦激光、鉺激光、準分子激光等,強激光治療技術的臨床用途也逐漸增多,提出一些新的問題。關于這些新型激光器及新的工作方式對人體組織的作用特點的認識還相對不足,基本沒有適合國人組織特性的治療參數。為此需加強研究激光與生物組織間的作用關系,特別是在諸多有效療法中已獲得重要應用的激光與生物組織間的作用關系;研究不同激光參數(包括波長、功率密度、能量密度與運轉方式等)對不同生物組織、人體器官組織及病變組織的作用關系,取得系統的數據,同時也有必要加強新型激光器及新的工作方式的臨床適應證的研究。
低強度激光治療:非熱或低強度激光輻射可作為一種輔助治療手段,其作用機理尚不清楚。對弱激光治療機理的認識有待于整個基礎醫學的提高,如充分認識細胞基因表達與調控、細胞代謝的調控、免疫反應的調控等,同時還需研究不同弱激光劑量對這些調控的影響,這才能提高弱激光治療的針對性和療效。針對目前臨床上盲目夸大療效、照射劑量嚴重混亂的局面,建議重點扶持2-3個弱激光研究中心,集中財力與人力進行弱激光的細胞生物學效應研究;弱激光生物調節作用和細胞生物學現象(基因調控和細胞凋亡)的量效關系、弱激光鎮痛的分子生物學機制以及弱激光與細胞免疫(抗菌、抗毒素、抗病毒等)的關系及其機制。尋求弱激光生物刺激效應的可能機制與量效關系;規范臨床治療參數與操作等。
光動力學治療(PDT)是當前激光醫學中最具活力且發展迅速的領域。光動力療法具備了診斷和治療腫瘤、心腦血管病等人類重大疾病的潛力。光動力療法在鮮紅斑痣、老年性眼底黃斑病變、某些頑固性皮膚病、類風濕性關節炎等常規手段難以奏效的良性疾病的治療研究中取得一系列進展,并結合內鏡技術的發展等,其應用領域得到很大的延伸和擴展。這些都說明發展光動力療法具有重要的社會和經濟效益。應當重點資助PDT相關產品的國產化,扶持新一代國產光敏劑的開發及相應激光器的產業化,資助新一代光敏劑光動力學治療的機理研究。作用機理、光動力療法各要素對光動力學效應的影響、建立數學模型、新型光敏劑光動力學效應的研究,為開拓光動力療法新的應用領域取得系統的數據。
激光美容與光子嫩膚術:利用激光或強脈沖光照射皮膚后的選擇性光熱解效應,即靶組織(病灶)和正常組織對光的吸收率的差別,使激光在損傷靶組織的同時避免正常組織的損傷這一原則,達到去皺、去文身、脫毛和治療各種皮膚病或達到美容的效果。
五 結論
醫學光子學及其技術的學科發展,對生命科學有重要且積極的意義。在醫學領域,將為解決長期困擾人類的疑難頑疾如心血管疾病和癌癥的早期診治提供可能性,從而提高人類的生存價值和意義,其中的重大突破將起到類似X射線和CT技術在人類文明進步史上的重要推動作用,在知識經濟崛起的時代還可能產生和帶動一批高新技術產業。
參考文獻
〔1〕Michael I. Kulick. Lasers in Aesthetic Surgery. New York: Spring-Verlag,1998.(中譯本:激光美容外科,葉青等譯,福建科技出版社 2003.).
〔2〕美國國家研究理事會編,上海應用物理研究中心譯. 駕馭光:21世紀光科學與工程學, 上海:上??茖W技術文獻出版社,2001. 78-114.
〔3〕 謝樹森,雷仕湛. 光子技術. 北京:科學出版社,2004. 266.
〔4〕國家自然科學基金委. 光子學與光子技術:國家自然科學基金優先資助領域戰略研究報告. 北京: 高教出版社/海德堡,施普林格出版社, 1999. 96-114.
〔5〕Raloff, Janet, Optical biopsy hunts would-be cancers, Science news, 2001,159(14):214.
〔6〕 Kathy Kincade, Medicalwatch: Optical biopsy device nears commercial reality, Laser focus world, 2000.
〔7〕 Britton Chance, Mingzhen Chen and Gilwon Yoon, Editors, Optics in Health Care and Biomedical Optics: Diagnosis and Treatment, Proc.SPIE, 2002.
〔8〕R.R. Alfano, Advances in optical biopsy and optical mammography, Published by the New York Academy of Sciences, 1998.
〔9〕R.R. Anderson, J.A. Parrish, Science, 1983, 220:524-527.
〔10〕 謝樹森,龔瑋,李暉,光電子激光,2004,15(10):1260-1262.
〔11〕 R. Christian, G. Barbel, etal, Lasers Srug Med,2003;, 32:78-87.
〔12〕范滇元 中國激光技術發展回顧與展望 《2000高技術發展報告》 2000.
〔13〕 世界激光醫學發展簡史 2004.
〔14〕 李蘭 我國激光醫學現狀發展戰略――問題與對策《科技日報》2002.07.
〔15〕 Wei Gong, Shusen Xie, Hui Li. Photorejuvenation:still not a fully established clinical tool for cosmetic treatment. ICO20: Biomedical Optics, Proc. of SPIE Vol. 6026, 602604, (2006).
〔16〕 Hongqin Yan, Shusen Xie, Hui Li et al. Optical imaging method.
課題組成員:
1.謝樹森:教授、博士導師,中國光學學會副理事長,福建省光學學會理事長
2.李 暉:福建師范大學 醫學光電科學與技術教育部重點實驗室
1.1圖像成像
從本質上來看,生物醫學圖像成像技術(下文簡稱“圖像成像技術”)與醫學影像技術的區別并不大,僅僅是人們更習慣將其表達為醫學影像。生物醫學圖像成像技術的研究內容為:利用染色方法和光學原理,清晰地表達出機體內的相關信息,并將其轉變為可視圖像。圖像成像技術研究的圖像對象有:人體的標本攝影圖像、觀察手繪圖像、斷層圖像(如ECT、CT、B超、紅外線、X光)、臟器內窺鏡圖像、激光共聚焦顯微鏡圖像、活細胞顯微鏡圖像、熒光顯微鏡圖像、組織細胞學光學顯微鏡圖像、基因芯片、核酸、電泳等顯色信息圖像、納米原子力顯微鏡圖像、超微結構的電子顯微鏡圖像等等。
圖像成像技術主要包括2個部分:現代數字成像和傳統攝影成像。通??刹捎脪呙鑳x、內窺鏡數碼相機、采集卡、數字攝像機等進行數字圖像采集;顯微圖像采集則可應用光學顯微鏡成像設備及超微結構電子顯微鏡成像設備;特殊光源采集可應用超聲成像儀器、核磁共振成像儀器及X光成像設備。目前,各種醫學圖像技術的發展都十分迅速,特別是MRI、CT、X線、超聲圖像等技術。在醫學圖像成像技術方面,如何提高成像分辨力、成像速度、拓展成像功能,尤其是在生理功能及人體化學成分檢測方面,已經引起了相關領域的重視。
1.2圖像處理
生物醫學圖像處理技術,是指應用計算機軟硬件對醫學圖像進行數字化處理后,進行數字圖像采集、存儲、顯示、傳輸、加工等操作的技術。圖像處理是對獲取的醫學圖像進行識別、分析、解釋、分割、分類、顯示、三維重建等處理,以提取或增強特征信息。目前,醫學領域所應用的圖像處理技術種類較多,統計學知識、成像技術知識、解剖學知識、臨床知識等的圖像處理均得到了較快的發展。另外,人工神經網絡、模糊處理等技術也引起了圖像處理研究領域的廣泛重視。
1.3圖像分析及圖像傳輸
生物醫學圖像分析技術,是指測量和標定醫學圖像中的感興趣目標,以獲取感興趣目標的客觀信息,建立相應的數據描述。通過計算測定的圖像數據,可揭示機體功能及形態,推斷損傷或疾病的性質及其與其他組織的關系,進而為臨床診斷、治療提供可靠依據。生物醫學圖像傳輸技術,是指應用網絡技術,在互聯網上開展醫學圖像信息的查詢與檢索。通過網上傳輸圖像,在異地間進行圖像信息交流,可實現遠程診斷。同時,在院內通過PACS(數字醫學系統—醫學影像存檔與通信系統),也能在醫院內部實現醫學圖像的網絡傳遞。
1教學內容改革
《生物醫學電子學》的開設時間通常是在大三第二學期或大四第一學期,學生已經學完了《電路分析》、《信號與系統》和《模擬電子技術》等課程?!渡镝t學電子學》既是電子學的后續和提高課程,又為今后能更好地從事生物物理學和生物醫學儀器設計的研究打下技術基礎。我們使用的教材主要有《MedicalInstrumentation:ApplicationandDesign》,1997;李剛等編著的《現代測控電路》;蔡建新,張唯真編著的《生物醫學電子學》,1997。本課程的主要內容包括:生物醫學信號測量的特殊性及基本條件,信號的檢測、處理、變換和傳輸的基本理論與方法,涉及的電子電路以半導體集成電路為主,注重新型、實用及通用性。通過學習,讓學生較深入地理解電子測量的基本概念、以及解決問題的基本思想方法,逐步掌握測量電路的設計。本課程的理論課共54學時,以生物電信號源為起點,分別介紹生物電檢測的基本方法,生物電信號放大、隔離、濾波和射頻傳輸中的基本理論與方法,使學生能使用放大器和模擬電子學設計我們要實現的系統功能。
我們采用自上而下的講課方法,即先從整體考慮:系統的測量的精度與性能、被測量的量、被測量信號的大小與頻率。然后是測量系統的使用條件和所具有的功能,如信號的顯示、記錄、存儲及其它一些功能。再以信號增益和誤差分配,來確定前向信號通道(即從傳感器到模數轉換器的模擬信號放大、處理部分電路)所需信號放大、濾波或變換電路的級數,各級的增益,濾波器的階數、形式和截止頻率等。最后確定各個組成部分的具體設計要求。在第一節課上,我們將從心電,血壓到超聲,CT儀器,再到醫院實驗室儀器和治療儀器的實際電路圖給學生看,找出儀器電路的共同點,得出一般儀器的一般框架。在此基礎上,將醫學儀器的一般框架與整個課程即將講授的內容逐一聯系起來,讓學生從整體上知道學習的內容和目的。針對每一章,我們也是從一個生理量測量開始,提出技術指標和原始設計要求,然后逐漸過渡到與實際醫學儀器中相關的電路。與此同時,結合各類大學生電子競賽題目,組織學生設計能實現不同功能的集成運算放大器電路,給他們提供開放實驗室,讓學生通過實驗過程,將理論知識轉化為實踐技能,有利于知識的鞏固與吸收。
2實驗改革和手段創新
2.1實驗教學改革
生物醫學電子學實驗課是為了配合生物醫學電子學理論課而設置的,實踐性較強。實驗室是高等學校教學和科研的重要基地,高校的實驗教學與實驗室建設工作是衡量高校辦學實力和人才培養質量的重要標志。過去的實驗課,采用電子實驗箱,任課教師在課前把儀器設備及元器件準備好,學生做實驗就是依照實驗手冊在實驗箱面板上插線,根本看不到電路,學生處于被動地位。采用實驗箱在學生不斷增多情況下,不僅增加教學經費和占用空間,學生也依賴于實驗室。改革后的實驗課由三部分組成,一部分是用Mutisim(一個能Windows下運行的專門用于電子線路仿真與設計的EDA工具軟件)仿真,另一部分是實驗箱實驗,最后一部分是課程設計,即綜合性設計實驗。隨著計算機技術的發展,一部分實驗采用國際流行的電子輔助設計軟件———美國國家儀器公司的Mu-tisim,它不僅是一個能在Windows下運行的專門用于電子線路仿真與設計的EDA工具軟件,也是一個能裝進計算機的實驗室。它具有直觀的圖形界面,整個操作界面就像一個電子實驗工作臺,繪制電路所需的元器件和仿真所需的測試儀器均可直接拖放到屏幕上,輕點鼠標可用導線將它們連接起來,軟件儀器的控制面板和操作方式都與實物相似,測量數據、波形和特性曲線如同在真實儀器上看到的一樣。它還有來自美國模擬器件公司(AnalogDevices)、德州儀器(TexasIn-struments)和凌力爾特公司(LinearTechnologies)豐富的元器件和模塊庫和從數字萬用表、函數信號發生器、雙通道示波器、掃頻儀到邏輯分析儀高性能的測試儀器。所設計出的電路除了可用于實驗室的測量之外,還可以做直流工作點分析、交流分析、瞬態分析、傅里葉分析、噪聲分析、失真分析、參數掃描分析、溫度掃描分析、極點———零點分析、傳輸函數分析、靈敏度分析、最壞情況分析和蒙特卡羅分析等定量分析。Multisim不僅提供了高指標的虛擬儀器和充足的元器件資源,還彌補了因實驗儀器及經費不足造成的缺憾。更為重要的是只要有一臺計算機就能擁有自己的實驗室,打破了時間和空間的限制,學生可以在不同的時間、地點和領域自主進行實驗,增強他們提出問題、分析問題和解決問題的能力,并發展自己的興趣愛好。Multisim計算機仿真與虛擬儀器技術可以很好地解決理論教學與實際動手實驗相脫節的問題。學生有機會按自己的思維開展設計性實驗,使他們進行研究性和探索性實驗成為可能。在利用仿真軟件的同時,開展實際硬件的實驗。
實驗室資源有:42臺連著計算機和測量儀表的實驗臺。針對有限的實驗臺資源,把學生分為14個小組,每組安排3人,以小組為單位進行實驗并考核。課程組教師同時擔任著每個小組的實驗導師,學生可以自由提問,教師負責指導他們測量問題、指正錯誤,但不能給出設計思路和方案。通過這樣與學生在實驗中的接觸,了解他們的水平。在實驗操作中,不給出任何具體的提前寫好的實驗提綱,要求學生根據命題自己計劃在實驗中做什么。為了在實驗室的時間更有效率,要求預習實驗,通過仿真軟件來確定設計是否正確,并在實驗箱面包板上將設計圖連線。在實驗室沒有安排固定實驗時,就對學生開放,讓學生可以自由準備實驗。實驗操作的重要環節是開展小組討論,其目的是使學生找出課堂給出的設計問題的解決方案,以便在實驗期間做好準備。約半個小時長的小組討論主要解決以下問題:①理解題目:每位學生都要發現自己有沒有不清楚和不理解的地方。②發表創造性意見:學生對問題能自由想象,展開討論。小組中的一個人記錄問題。③評估上述意見:學生把他們的觀點、意見組織好,把無關的分類出來,把和問題重點相關的記錄下來。④解決問題或計劃如何解決問題:提出具體設計思路和實踐方案。這時,課程組的教師可以幫助他們弄清或解釋相關提問,但要讓學生自己組織施行,只有學生太偏離目標的時候才出來指正。通過這樣的實驗課訓練,很多本科生都利用寒暑假,備戰各種電子大賽,自主設計智能模擬儀器等,在參賽的之余體會到利用運算放大器的靈活性、趣味性及優勢。#p#分頁標題#e#
2.2實驗考核改革
碳納米材料是近年來的研究熱點,隨著人們對碳納米材料研究的深入,其在生物醫學領域的應用也在拓展,本書綜述了在碳納米材料在生物醫學中的應用前景、研究進展以及面臨的主要挑戰。
第1部分 介紹了碳納米材料在生物醫學中的應用,含第1-11章:1.碳納米材料在生物醫藥中的應用前景,基于納米柱、納米金剛石以及納米炸彈的物理化學性質,2.作為藥物載體的碳納米材料;3.功能性碳納米材料在光熱療法、細胞毒性以及藥物傳遞中的應用;4.具有特殊結構的碳納米管在生物醫藥中的應用;5.水溶性的陽離子型富勒烯衍生物的光動力治療;6.基于碳納米管場發射X射線的微焦點計算機斷層掃描技術在醫學成像中的應用;7.義齒基托材料:納米管/聚合丙烯酸甲酯復合樹脂;8.石墨烯在生物醫學中的應用;9.仿生石墨烯納米傳感器;10.功能性碳納米點在生物醫學中的應用;11.納米金剛石材料在生物醫學中的應用。第2部分 介紹了納米科技在生物醫藥方面的應用:從碳納米材料到仿生體系,含第12-18章:12.三維碳納米結構的仿生工程;13.Janus納米結構在生物醫藥中的應用;14.蛋白質納米圖案構筑;15.水溶膠粘合劑的仿生設計:從化學到應用,16.利用仿生膜測量脂質雙分子層的滲透率;17.用于藥物檢測的熒光納米傳感器;18.仿生表面細胞工程。
本書的第一作者Mei Zhang是美國Case Western Reserve University的研究人員,主要從事碳納米材料方面的研究,在Science等國際頂級期刊發表過多篇論文。本書可作為生物醫藥工程以及材料科學與工程等相關專業研究人員的參考書。
王兆剛,博士研究生
(中國科學院半導體研究所)
目前,在國內開設生物醫學工程專業的高校仍然主要以傳統授課式講解(Lecture-BasedLearning,LBL)的實驗教學模式為主,實驗教學中存在如下問題:(1)實驗教學由教師做主角,實驗設備、實驗材料、實驗設計,甚至于實驗記錄都是老師早就準備好的,實驗結果也是教師了然于胸的。學生缺少自主性,抹殺實驗課的學生主體地位[1]。(2)傳統實驗教學內容偏重驗證型實驗,綜合型、設計型、創新型實驗較少。實驗項目的設置常常是按照教學大綱的要求機械設定,忽略實驗項目之間的有機結合性和連貫性,存在實驗項目之間相對孤立、缺乏內在聯系的缺陷。(3)傳統實驗教學沒有考慮學生的學習興趣,學生通常沒有積極參與解決問題的意識。(4)原有實驗教學大綱中設置的演示性、驗證性實驗比較多,不僅造成課程擁擠,而且使基礎學科與實踐脫節,學生對知識的運用能力差,缺乏橫向思維。因此,在生物醫學工程實驗教學中引入國際上先進的PBL(Problem-BasedLearning)教學模式,結合傳統LBL學習策略,探索PBL+LBL教學法,是一個達到師生雙贏的教學設計[2],必將在促進高等教育實驗教學改革、實驗室管理改革與發展、培養具有實踐能力的復合型醫工結合人才等方面具備重要意義。
2.實驗教學改革的研究方法
溫州醫科大學作為浙江省省屬高校里最早開設生物醫學工程專業的學校,越來越重視生物醫學工程專業實驗課程的改革。我們在著手分析各門實驗課程特點的基礎上,尋找PBL與實驗課程的結合點,輔以LBL實驗教學模式,并在日常實驗教學中進行實踐,在這一框架下重新組織實驗教學內容并進行實驗教學模式改革。
2.1實驗教學模型的構建本課題研究組根據我校生物醫學工程實驗教學的師資力量和現有實驗室資源,按照專業教育人才培養目標,引入PBL教學模式,結合傳統LBL教學方法,分教學內容、教學目標、教學活動、教學環境、教學評價5個方面提出基于PBL+LBL生物醫學工程實驗教學模式的理論模型。
2.2實驗課程設計及應用研究為了使PBL+LBL教學模式在生物醫學工程實驗課程中實施的效果可以更直觀,筆者以生物醫學工程專業實驗課程當中重要的一門專業基礎實驗課程《醫學電子儀器實驗》其中一個實驗項目“心電信號的測量”為例,根據提出的基于PBL+LBL生物醫學工程實驗教學模式理論模型進行應用研究?!夺t學電子儀器實驗》教學內容設計:①實驗的系統知識:學生進行PBL+LBL實驗教學模式后,可以習得生理學、信號與系統、數字信號處理、電子技術基礎、醫學傳感器等一系列內容,增加知識覆蓋面。②實驗的問題設計:在實驗室現有設備基礎上,如何進行心電信號測量、血壓信號測量和血氧飽和度測量?《醫學電子儀器實驗》教學目標設計:①實驗前需要掌握的知識:導聯組合方式、人體心電信號提取、過壓保護電路設計、電極和導連線串入的高壓信號處理、導聯切換電路、前置放大電路、多級放大電路、模數轉換電路,等等。②實驗的能力培養:可以充分調動學生的學習熱情和求知欲,培養學生的創新和自主學習能力,讓學生掌握更多電路設計知識和綜合檢測等技術。③實驗后的習慣培養:培養學生解決問題的能力、習得系統化的文化知識并培養良好的學習習慣,為終身學習奠定基礎?!夺t學電子儀器實驗》教學活動設計:①實驗前資料搜集:實驗前,實驗教師通過LBL教學方法講解實驗的基本原理和要求后,學生首先通過查閱有關參考書和利用圖書館資料,結合實驗課程網絡資源的資料,了解心電信號的特點,明確測量心電信號的臨床意義,獨立設計詳細的實驗操作方案。其次教師要求學生查閱實驗有關的文獻資料,讓學生了解心電信號的采集過程,比較不同參考資料的實驗方法,在本實驗室現有條件下選擇適合的儀器,設計心電信號采集電路。②實驗中的小組討論:學生分組討論是PBL+LBL教學法的關鍵。筆者讓學習成績較好的與較差的學生混合編組,每組5~8人,使大家相互帶動,共同提高。通過小組討論和實驗指導教師引導使學生認識實驗中必須解決的關鍵問題。在以上問題的基礎上,各小組對實驗如何操作進行討論,形成實驗的初步方案。然后教師對各小組實驗操作方案點評,確定最終的實驗操作方案。③實驗的操作與總結:各小組學生將依據討論制訂的最終方案進行實驗。在實驗操作結束后,由教師組織全班學生對各小組實驗結果進行比較、討論,對實驗中未解決的問題和新發現的問題進行探討、交流,將《醫學電子儀器》的理論知識與實際臨床問題聯系起來,進一步深化學生對理論知識的掌握。
2.3實驗教學考核評價機制改革實驗最后成績包含如下幾個部分:資料搜集、小組討論情況、參與實驗方案制訂、實驗操作、實驗結果的分析處理。本課題組將以上實驗成績有關的幾部分效果評價權重分配為(過程評價:資料搜集(5%)、小組討論情況(10%)、參與實驗方案制訂(15%)、實驗操作(20%);結果評價:實驗結果的分析處理(50%)),實施考核實驗過程評價與實驗結果評價并重的評價方式。這樣的設計有利于對教學效果和教學目標的實現情況進行隨時評估,學生根據評估結果可以隨時反思自己仍存在的問題。
2.4實驗教學考核方法評估筆者選擇生物醫學工程專業2012級學生開展實驗研究,共4個班級120名學生,在2013~2014學年第二學期和2014~2015學年第一學期進行實驗課程教學中應用PBL+LBL實驗教學模型,對實驗前后得到的實驗成績數據進行統計,并用SPSS10.0軟件進行分析和T-student檢驗,P<0.05為統計學差異顯著性。筆者通過設計問卷調查及組織訪談的形式,在實驗教學活動結束后,采用不記名的方法,從如下幾個方面調查學生對PBL+LBL實驗教學模式的效果評估。共發出調查問卷120份,回收率為100%。在PBL+LBL實驗教學模式給學生帶來的收獲方面的問卷調查中,問卷中有96.5%的同學表示解決實踐問題的能力得到了提高,只有2.5%持不確定的態度,1%的同學認為自己并沒有什么收獲;在PBL+LBL實驗教學模式對增強自學能力、拓寬知識面及增加信息量有多大影響的問卷中,95%的同學表示各方面能力得到了一定的提高,收獲頗豐;在PBL+LBL實驗教學模式對學生以后學習和工作的幫助方面,表明大約91%的學生認為該課程對今后學習和工作非常有幫助、有幫助和有一定幫助;大約87%的同學對應用PBL+LBL實驗教學模型感到非常滿意、滿意和基本滿意,表明實驗教學模式的設計獲得了學生的普遍認可;大約84%的同學對實驗教學的評價方式持非常滿意、滿意和基本滿意的態度,表明PBL+LBL實驗教學模型評估方式獲得了學生的認可。
中圖分類號:O6-33;G642.0 文獻標志碼:A 文章編號:1674-9324(2015)49-0131-02
一、引言
面向生物醫學工程專業開設《測試技術與傳感器》是一門以研究自動檢測系統中的信息提取、信息轉換和信息處理的理論和技術為主要內容,集光、機、電于一體,綜合物理、化學、生物、材料、電子、電氣、計算機、機械等學科技術的實踐性非常強的專業基礎課。杭州電子科技大學生儀學院目前開設的《測試技術與傳感器》課程的課程目的為系統論述測試系統及其基本特性;介紹測試系統中傳感器的結構、基本原理和典型應用,以及傳感器的發展趨勢、選用原則等,它是實現測試與自動控制的重要環節,儀器專業的重要專業基礎課,也是自控原理、智能儀器課程設計、虛擬儀器課程設計的基礎。
二、存在問題
目前該課程的教學狀況及存在的問題:(1)測試技術與傳感器技術屬于多學科交叉滲透課程,涉及電學、磁學、光學、化學等學科,對先修課要求較高,現有的教學內容,以教師課堂講授為主,側重于原理的介紹及公式的推導,學生看不見,摸不著,缺乏感性認識,容易出現枯燥、難以學好的感覺,加上很大一部分學生的學習主動性差,學習態度上不太重視,沒有投入必要的精力和時間,直接影響教學效果。(2)現行傳感器教材比較繁多,有的以傳感器原理為主線,有的以過程參數測量為主線,但是很多教材都沒有涉及新型傳感器的理論知識及其應用,不利于學生拓寬知識面,不符合寬口徑人才培養模式。(3)目前傳感器課程的實驗環節以驗證性實驗為主,主要使學生掌握常用傳感器的使用和標定方法,以及相應傳感器的測量轉換電路設計。(4)課程考核方式一般是以考試為主,輔以作業、實驗、考勤評價,這種考核方法很難激發學生的學習積極性和主動性,不能真實反映學生的學習能力、對知識的掌握程度及其專業應用能力。
傳感課程教學方法研究大多是自動化、精密儀器專業中對該課程的教學方法研究。結合本專業優勢,本文提出通過使用啟發式教學、結合臨床實際教學、結合多媒體等手段豐富教學方法,提高生物醫學傳感教學效果。這些方法對提高生物醫學專業的傳感教學提供了重要改進措施,對提高教學質量具有重要意義。改革和完善《測試技術與傳感器》課程的教學模式,通過研究型教學,訓練學生的高級思維能力和解決實際問題的操作能力,培養學生主動學習、獨立學習與終身學習的能力,使學生具備一流大學本科生的素養,提高核心競爭力。
三、改革目標
1.本文擬從課堂教學模式、課程教材多樣性模式、實驗課教學模式等方面研究并探索出具有杭州電子科技大學生物醫學特色的“測試技術與傳感器”研究型教學模式,培養學生的高級思維能力、解決實際問題的操作能力、交流溝通能力,在大學學習結束后,離開校園和教師,具有繼續自主學習的能力。
2.在以基本傳感測試單元為框架的知識體系的基礎上,收集整理基于生理學與工程應用或醫學臨床現象結合的傳感學科交叉內容,為編寫生物醫學工程等工科專業適用的生物傳感教材、論文等提供教學資料并制定教材理論體系框架。
四、具體措施
(一)課堂教學模式探索
1.教師課堂講授重點為最核心的知識點,對具有遷移價值的學科基本原理進行闡述。講授內容少而精,對重點、難點講深講透,引導學生多角度、深層次地理解基本原理,而對事實性知識點,則少講或不講;講授內容寬而新,以學科的發展為大背景,了解課程基本原理在大學科中的定位,以及與學科最新發展的聯系。
教學內容較多,面面俱到的教學難以完成教學任務,教學效果并不佳。根據傳感檢測特點和生物醫學工程等相關專業的培養需要,設計該課程的課程體系以各傳感器基本功能為主,尤其是電感、電容、電壓、應變片、磁電式傳感等章節作為教學重點和難點,其中的各個章節的應用與心電、腦電、肌電內容相關聯,引入生物醫學工程重要的研究領域――腦機交互,作為重點講解;而光敏、氣敏、熱敏等章節內容相對簡單,容易理解,不做重點講解。因此,可據此分配授課時間,突出教學重點。
2.教師根據核心知識點,提出知識點總結分析歸納問題、實際應用相關問題等,由學生課程小組分別選擇問題,課后參閱書本、資料,提出解決方案,并由課程小組代表發言,課堂展示并交流。
此外,在各個傳感系統中識記結構部分內容瑣碎難記,而生物醫學工程專業對這部分內容的要求并不高,不要求掌握詳細結構,在理解傳感結構及工作原理的基礎上,日后工作或科研中用到這部分內容時能夠通過查閱參考書獲得信息即可,課堂講解突出章節綱要,對其中涉及的工程應用現象補充材料介紹。
3.課堂教學中,教師講述研究課題開題報告基本格式及其具體實例,由學生自我提出學科感興趣的實際問題,參閱相關資料和解決方法,模擬寫作研究課題開題報告。為更好地服務于生物醫學工程專業的學科交叉特點,在生物醫學傳感的教學過程中注意整理、添加與工程應用和醫療儀器的內容。比如,在講解壓電傳感基礎上增加相關的醫療應用講解,如人工瓣膜、血壓監測計等器件的工作原理內容;在講解電感基礎上,增加當前無創呼吸電感檢測的原理等介紹,這些內容對激發學生興趣、啟發學生的創新思維具有重要作用。然而,這部分內容還比較零散,沒有形成良好的體系,此外,目前還沒有專門適用于生物醫學工程等工科專業的生物傳感生理學教材。在講解醫療方向的應用時,要注意資料的收集、整理和系統化,不僅可以很好地服務于生物醫學工程等專業的培養要求,還將對編寫工科專業專用的生物醫學傳感教材提供課程資料和理論框架。
4.課程教材模式探索。課程教材采用開放性體系,教師圍繞教學目標研讀現行的先進教材的基礎之上,為學生推薦至少2本以上國內外先進教材,包括英文原版教材,對應于不同核心知識點,引導學生學會知識點的尋找、分析、歸納、比較,并利用各種國內外文獻網絡進行最新相關進展的補充和學習。引導學生盡可能或完全避免學一門課程只讀一本書的現象。
在課堂教學中,除了使用多媒體和板書進行理論教學之外,還有意識地利用網絡公開課等引導學生的自主學習。在我校圖書館的視頻資源中有國內外著名大學的視頻公開課,利用這些強大的網絡資源可以彌補課時少、課程任務重的矛盾。比如,在該課程教學中,原理介紹部分占課時較少,在對重點器件結構和系統課堂講解的前提下,其中一些具體的設計內容布置給學生自學。除了緩解課時不足的矛盾,網絡課程資源還可補充教學內容,加深學生對知識的理解。
教師發展學習平臺中的相關傳感課程講述,由經驗豐富的名師授課,通過網絡觀看可加深對理論學習的印象,還可激發學生的學習興趣。不僅豐富了學生的學習資源,更重要的是,在這種教學過程中,向學生示范了資料收集和獲取信息的方法,提高了學生自主學習的能力。
(二)實驗課教學模式探索
1.基礎性實驗:圍繞測試技術與傳感器的核心知識點,掌握傳感器的基本原理及信號檢測,這類實驗主要屬于驗證性實驗。
2.綜合性實驗:模擬生產或生活實際中的某一具體項目開展,學生可根據被測對象的不同選擇各自合適的傳感器,實驗室配備電壓表、電流表、指示燈、蜂鳴器、計數器等設備,用于學生自行完成線路的連接,也可根據學生的具體情況拓展知識點,綜合性實驗可在做的過程中讓學生將學到的理論知識貫穿起來,整個項目采用3~4人為一小組的團隊形式,以學生為主體,教師可適時地進行引導,循序漸進地實施項目,完成知識、技能和相關能力的學習。
3.提高性實驗:對于提高階段,我們將嘗試結合虛擬儀器實驗平臺,虛擬儀器技術是儀器智能化發展的一個重要方向。我們增設實驗內容要求學生采用軟件LABVIEW或VB、VC等作為開發工具,設計直觀友好的用戶交互界面。如有可能還可根據檢測分析的結果產生相應的輸出控制信號。
4.除了實驗教學,在與醫療儀器相關的腦機交互研究方面還可成立大學生科研活動小組,開展多種課外科技活動。其中申請者是該科研活動小組的指導教師之一。結合該課程的教學改革,擬吸收對生物醫學方向感興趣的同學加入,主要以觀摩實驗和學習實驗方法為主,在活動參與中激發學生專業興趣、促進專業學習。
五、總結
本文針對面向生物醫學工程專業開設的《測試技術與傳感器》課程當前存在的問題,結合生物醫學專業學科交叉特色,提出了相應的改革目標和措施,使學生能自主使用各種通用傳感和專用醫療儀器平臺,靈活選擇信號分析方法,加強對儀器平臺分析的能力和對結果的理性認識,發揮該課程的實踐性優勢。通過施行開放式的《測試技術與傳感器》課程教學模式改革,注重實驗知識的延伸,完善考核制度等改革措施,最大程度地增強學生的自主性與參與性,培養社會需要的創新型、應用型、復合型、外向型的“醫工結合”型儲備人才。
參考文獻:
2.實驗教學現狀分析
我院《醫用傳感器》課程總共72學時,其中實驗教學占24學時。在教學計劃上,實驗課從屬于理論課,沒有獨立的學分教學體系,存在“重理論輕實踐”的現象,大大影響了對學生的學習主動性和動手能力的培養。
實驗設備目前采用的是浙江大學精密儀器系研究生產的CSY-2000系列。這種儀器集種傳感器、顯示儀表于一體,組成了一個完整的測量系統。學生做實驗時,按照實驗指導書上的線路圖簡單地連幾根導線就完成了實驗,對于使用的傳感器檢測原理、測量電路等很少知曉,很難達到理論與實踐結合的目的。
CSY-2000系列可以做35個實驗,但符合教學大綱要求并且和生物醫學工程專業結合的實驗很少,其主要原因在于生物醫學工程專業對傳感器有特殊的要求。而且實驗基本上以驗證性為主,綜合性、設計性實驗較少,無形中限制了學生創造性思維的發揮。例如,在CYS實驗平臺上使用光電傳感器測量轉速,這樣的實驗內容在生物醫學工程專業并不需要,但生物醫學工程專業可以利用光電傳感器探測人體脈搏波,并能測量人體血氧飽和度等生理指標,這樣才能使學生將學到的理論知識和醫學檢測相結合,激發其學習的興趣和創造力[1]。
3.實驗教學改革的探索與研究
本課程的實驗教學改革在我校生物醫學工程班級進行,結合我院的醫學背景,主要從實驗教學內容、實驗教學方法和實驗考核機制三個方面進行改革。
3.1實驗教學內容的調整
增加實驗學時數,由原來的24學時增至30學時。將實驗教學內容分為兩大類:驗證性實驗和設計性實驗。
驗證性實驗依附于課堂理論教學,側重于加強學生對基本傳感器原理的理解、測量方法的掌握及測量結果的分析。目前,我院已開設8個驗證性實驗內容,每個實驗3個學時,以電阻式、電容式、電感式和霍爾式等傳感器為主要內容。學生必須在規定的時間內完成實驗和實驗結果分析,上交實驗報告。將MATLAB軟件引入實驗中,利用其強大的代數運算和化簡功能對傳感器實驗數據分析處理、繪制曲線。
設計性實驗內容以傳感器為主并與具體電路構成應用系統,用“任務書”的形式下達給學生,一般3―4個學生為一組。表1給出了設計性實驗內容[2]。每組學生自行選擇一個題目作為實驗內容,為6個學時,大部分實驗只給出實驗任務和要求,而不規定具體的實驗方法及步驟,讓每個學生親自動手發揮傳感器的功能,這樣不僅能提高學生的獨立操作能力,更有利于增強實驗教學效果。并且鼓勵學生在實驗中結合LabVIEW軟件,降低實驗成本,即各種類型的傳感器將非電量轉換為電信號,經過必要的濾波和放大等電路后,通過安插在電腦中的數據采集卡,將調理后的信號轉換為數字信號輸入計算機中,利用LabVIEW界面,完成對被測對象信息的顯示、存儲和數據分析處理。要加大實驗室開放時間,給學生提供更多、更方便的實驗機會,通過實驗不斷鞏固課堂上學到的理論知識。
3.2實驗教學方法的革新
首先,長期以來,傳統的實驗教學從實驗原理到步驟都由老師面面俱到地講解,然后由學生按部就班地操作。這樣的教學方法使學生處于消極被動的地位,學生的動手能力沒有得到真正的培養,嚴重阻礙了綜合素質的培養。因此應采用啟發式教學方法,即在實驗開始時,就要求學生完成實驗預習,實驗課上采用啟發提問的方法,引導學生自己分析實驗的線路圖,并對實驗得到的數據分析處理。一旦學生在自己的探索中完成實驗,就會有一種成就感,就會覺得相關的理論知識不再深奧難懂。
其次,在傳統實驗教學中,各個實驗往往相互獨立,學生等到下次實驗時,對上次的實驗內容已經印象不深刻了。因此在實驗內容的安排上,可以將針對同一被測量的實驗安排在一起,通過比較法加強學生對實驗內容的理解與掌握。如測量位移的傳感器就有電容式傳感器、霍爾傳感器、電渦流傳感器等。這些傳感器由于結構不同,工作原理不同,因而測量精度有所不同。學生可以通過比較測量結果的非線性誤差,達到對整個理論知識的融會貫通。
此外,在線路或儀器出現故障時,應鼓勵學生自己動手分析故障原因并加以排除,而不要讓老師或者實驗員直接解決,這樣可以激發學生主動思考。在實驗過程中,要多給學生驗證自己想法的機會。只有通過親手驗證,學生印象才會深刻,這樣往往比驗證一個老師給定題目的效果更好。
3.3實驗考核機制的改進
中圖分類號:G642.0 文獻標志碼:A 文章編號:1674-9324(2017)15-0233-02
生物醫學工程學(Biomedical Engineering,BME)是一門理學、工學和醫學高度綜合的交叉學科。應用現代自然科學和工程技術的理論和方法,從工程學角度,研究人體的結構、功能及其相互關系,揭示其生命現象;研究人體系統的狀態變化,并運用工程技術手段去控制這類變化;研究解決醫學防病、治病的新技術手段,保障人民健康的一門新興的邊緣科學。這門學科培養學生具備生命科學、電子技術、計算機技術及信息科學有關的基礎理論知識以及醫學與工程技術相結合的科學研究能力,能在生物醫學工程領域、醫學儀器以及其他電子技術、計算機技術、信息產業等部門從事研究、開發、教學及管理的高級工程技術人才。
一、生物醫學工程專業需求分析
學科的交叉融合決定了就業選擇的多樣性,主要有教學科研型、醫療設備型、電子通信型。(1)教學科研型,主要在國內外高校或科研院所就業,從事人才培養和科學研究,屬于科研型人才,工作穩定,有較高的社會地位。教學科研型單位入門門檻高,通常要求具有碩士、博士學位,要求有良好的教育素養和較高的專業知識水平,創新能力強,有強烈而持久的進取心精神。(2)醫療設備型主要分為三大類:第一類在醫院設備、影像、放療、臨床工程、信息中心等相關科室,從事醫療設備和軟件的安裝、維修和管理等工作;第二類是去各大跨國以及國內醫療器械企業,比如GE、SIEMENS、邁瑞、安科等,從事研發、測試、銷售、售后服務等;第三類進入國家醫療器械司及各級醫療器械檢測所。醫療設備型需要實干型人才,能夠將所學的專業知識應用到工作中。(3)電子通信型,主要從事與生物醫學無關的純電子、通信以及計算機等相關工作。
目前,畢業生從事的工作按百分比排序依次為:醫療器械公司32.7%,醫院20.9%,高校和科研院所19.1%,與專業相關的其他公司7.3%,工廠2.8%,政府機關1.1%,其他單位16.1%。
二、我國生物醫學工程專業的學習現狀
生物醫學工程專業開設的專業基礎課程有:電路原理、模擬與數字電子技術、C語言程序設計、信號與線性系統、生物醫學傳感器與測量等。實驗課包括大學物理實驗、醫學實驗、電工實驗等。這些專業基礎課程既有豐富的理論體系,又有很強的實踐性,是一門抽象、難懂的學科。學生的興趣和動手能力是學好這些課程的關鍵。傳統的教學模式是教師講、學生聽;先理論、后驗證。這種模式不利于培養學生的操作能力和激發學生的求知欲,往往造成學生理論有余而實踐不足,極大地妨礙了學生發揮學習的主動性和積極性,不利于培養他們的職業素質和實際工作能力。在學校里學習的醫療設備特別是大型醫療設備,如CT機、核磁共振、螺旋CT等都是紙上談兵,無法將課本中的理論知識與現實中的醫療設備有機結合起來[1]。
三、以電子競賽的方式促進學生的工程實踐能力
處于醫科院校的生物醫學工程學科,其研究的主要特點是和醫學結合緊密,醫學大背景很深厚。在這樣醫學氛圍很濃的環境中,生物醫學工程自然成為小學科,工程力量相對薄弱。這就要求學生理論分析能力和動手能力要好,不僅要熟練掌握基本理論和基礎知識,而且要接受科學實驗研究能力、工程設計能力、新產品開發能力和生產過程組織管理能力的基本訓練,提升自身能力。
通過多年生物醫學工程專業的教學經驗,輔導學生參加電子競賽具有非常好的效果。2014年本專業組織學生參加了由教育部信息技術中心主辦的“第九屆全國信息技術應用水平大賽”。它是推動各有關院校信息技術相關專業教學體系的改革,引導學校積極開展應用型人才的培養,提高學生解決問題的能力和自主學習能力,培養學生的創新創業能力。根據學生理論課的學習情況,選擇了“飛行器控制設計”競賽組,要求選手使用指定芯片,自主設計、制作控制電路板,以控制大賽指定的一個飛行器完成起飛、懸停、降落及其他指定任務。
在綜合知識考試部分,通過2014年試題分析,主要元件、信號及基本電路占15%,模擬電路、數字電路占20%,高頻電路占5%,C語言的基本知識及應用占20%,主要測量儀器使用占5%,印制電路板設計及電路安裝調試占5%,單片機原理及電路占40%,涵蓋了幾乎所有的專業基礎課程內容。
飛行器設計部分,將整個系統分為三大塊:遙控系統、通信鏈路、控制系統。學生需要使用STC公司的IAP15F2K61S2核心處理器實現控制板的設計,遙控器的設計,完成起飛、懸停、降落及其他指定任務。飛行器是將機械、電子、空氣力學、高頻發射等專業知識整合為一體的精密設備,需要正確組裝和調試才可避免事故發生。要實現起飛、懸停、降落以及指定方向的快速準確動作,學生必須學習掌握雙旋翼飛行器的飛行原理、旋翼速度的控制原理、舵機的控制原理等,通過查找相關技術資料,這些初次接觸的新概念的基本原理用在基礎課程教學中的知識完全可以解決。比如,舵機是一種角度伺服的驅動器,在所有的飛行器機電控制中,舵機的控制效果是性能的重要影響因素,而舵機控制原理,所有的學生都是初次接觸,很茫然。指導教師要求一個學生查找資料后,面對其他學生進行講解,舵機的控制需要一個20ms的時基脈沖信號,該脈沖信號的高電平部分一般為0.5ms―2.5ms范圍內的角度控制脈沖部分。該飛行器中所用的180°角的伺服,對應的控制關系是0.5ms―0°、1.0ms―45°、1.5ms―90°、2.0ms―135°、2.5ms―180°。而控制角度其實就是控制PWM的占空比,通過講解學生理解了原理,同時也和理論教學緊密結合,使學生認識到理論課的重要性。通過實際測試,學生感性認識并理解了直流電機控制中轉速與電壓、電流和功率的相互關系,對理論課程中學習的電壓、電流和功率的概念有了更加深入的理解。
遙控端作為整個系統的控制中心,主要是將用戶對油門搖桿、俯仰搖桿、航向搖桿以及微調按鈕相關的機械操作轉換為可進行傳輸并且可以對直升機進行操控的數據。雙槳共軸直升機主要完成上升下降、前進后退、左右轉向等操作,學生需要自學相關的控制原理,這樣就把理論課上學習的電子技術知識、C語言編程、器件的感性認識、電路焊接、調試等融合在一起進行工程技術的實現,激發了學生學習的積極性,工程技術、資料查詢、科研能力也得到了提高。
故障排除部分,給每個學生發放一套開發學習板,要求在3小時內完成現場的硬件故障排除,軟件編程實現特定功能,其要求高,難度大。
通過競賽,學生把課堂上學習的電路理論、模擬電子技術、數字電子技術、C語言編程技術、微型計算機技術等這些生物醫學工程專業的專業基礎課程連接在一起,鞏固了重要的知識點,比如AD轉換、DA轉換、功率放大、穩壓電路、PWM脈沖控制、SPI串行通信、振蕩電路以及C語言中的語法等,從工程實踐能力上加強了學生PCB電路的設計和制作、電路焊接與調試、電路綜合故障排除等能力。
四、效果分析
在學校和系領導的大力支持下,本次生物醫學工程專業組織大三學生組成了4組共12人參加了這次競賽,其中有2組進入決賽,我校是參加本屆大賽的唯一一所醫科院校。進入決賽的兩組學生參加了在北京航天航空大學舉行的全國總決賽,取得了一個一等獎、一個二等獎的好成績。通過這次比賽,參與的學生都充分認識到了理論學習的重要性,明白了實際的研究工作都是需要理論指導的,課堂理論知識在工程技術中都會用到。通過這次比賽,學生具備了很強的動手能力,初步了解了科研工作的工作套路以及對疑難問題的分析解決能力。通過這種模式,大大提高了生物醫學工程學科的學生質量,促進了行業的發展。