時間:2023-03-17 17:59:01
序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇數控技師論文范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。
一.鍵控特技的分類
1.按鍵源的性質分
內鍵
鍵源與填充(前景)信號是同一個圖像信號,即用要填的圖像信號一路經過鍵控信號處理器產生摳像電視信號,另一路作為“填充信號”填入被摳掉的部分。內鍵也稱自鍵。內鍵特技以前常用于黑白字幕插入,鍵源信號通常是在黑底上的白色字符或圖形,它的電平只有高低兩種,且對應白色部分的電平高,如果填充信號記作A,背景信號記作B,則內鍵可簡述為A摳B填A。這種技術現廣泛地應用于色鍵特技。將疊加的全電視信號經消色電路和放大整形處理后,形成摳像鍵控信號,從而進行混合疊加。
(2)外鍵
相對于內鍵特技而言,外鍵特技的鍵信號不是由填充(前景)信號或背景信號形成的,而是由第三路視頻信號作為鍵源所形成的,外鍵的鍵源信號也是由黑底上的白色字符或圖形,填充信號通常為單一色調的彩色信號,因此外鍵特技通常用于彩色字幕的插入。如果填充信號記作A,背景信號記作B,鍵源信號記作C,則外鍵可簡述為C摳B填A。
在計算機顯示像素時,其RGB像素,一路通過電平合成得到摳像信號,另一路經過D/A變換,編碼器編碼產生填充信號,如圖2所示。其中存儲器輸出為數字RGB信號(各8位),經D/A變換成模擬RGB,然后經編碼器合成成為填充信號,另一路經求和電平處理器產生摳像信號。圖2的鍵控信號疊加器輸出為0和1兩種狀態的電平信號,隨著字幕機技術的發展,現已有利用另一8位信號通道產生具有256級電平變化的ALPHA鍵,從而產生具有半透明漸變的效果(后文詳述)。
2.按產生鍵信號的鍵源圖象成分分
(1)亮度鍵
它是利用鍵源圖像中亮度成分來形成鍵信號,亮度鍵要求鍵源圖像要有較高的亮度反差,即要求鍵源中作前景的圖像部分要亮,其余部分要暗(黑),要形成明顯的黑白反差,亮度鍵又稱黑白鍵。圖3為亮度鍵原理示意圖。
(2)色度鍵
又稱色鍵,它是利用彩色幕布的前景圖像(填充信號)的色度成分(主要是色度中的色調,也就是圖像的顏色)與其后的彩色幕布的色調(幕布的顏色)差別來形成鍵信號,用鍵信號去摳背景圖像,再填入彩色幕布的前景圖像。色鍵也是內鍵的一種形式,所不同的是鍵信號的形成方式,內鍵是利用鍵源信號的黑底和白字符之間的亮度差別來形成鍵信號,而色鍵是利用鍵源信號的彩底(即彩色幕布)和前景圖像(如演員圖像)之間的色調差別來形成鍵信號,同時鍵源信號又作為填充信號。色鍵要求鍵源圖像信號有較高的色度反差,即要求鍵源信號中作前景的圖像不能含有其后作幕布(背景)的彩調相同或相近的色調,也就是要求鍵源信號的前景和背景的色調盡量分開,最好是補色關系,以保證兩者之間的色調差別。
在電視制作中為了獲得最佳視覺效果,使用色度鍵時應盡量滿足下列要求:
.背景應平坦,照明條件要好,顏色要均勻。
.拍攝物體的照明要好,不能帶有被鍵出的顏色。
.視頻必須以分量格式拍攝。
圖4為色鍵原理示意圖。
3.按鍵信號波形分
硬色鍵
鍵信號波形是前后沿很陡的矩形脈沖信號,硬色鍵合成輸出圖像的前景和背景的分界處有抖動和突變現象,使人感到生硬和不自然,還存在分界處彩色閃爍和有幕布色鑲邊等現象。另外,對于自然景物中的半透明物體作為合成圖像前景圖像時,其后面的背景圖像應該是部分地透明,但是硬色鍵在任何瞬間其鍵信號所控制的視頻切換開關不是接通就是斷開,鍵信號只有兩種取值,不是高電平就是低電平,因此硬色鍵合成圖像中前景圖像不是全透過就是全不透過其后的背景圖像,這與我們日常見到的自然景觀是不同的,所以硬色鍵特技給人缺乏真實效果的感覺。在硬色鍵中,鍵信號為高電平時視頻開關接通,前景圖像全透過其后的背景圖像,鍵信號為低電平時視頻開關切斷,前景圖像全不透過其后的背景圖像。
(2)軟色鍵
鍵信號波形是與前景圖像透明度相關的斜坡形(梯形)信號,鍵信號在上升和下降期間有一定的斜率,軟色鍵能夠在很大程度上克服硬色鍵的上述缺點,軟色鍵中將用于硬色鍵的脈沖門控混合電路改成了線性混合電路。
目前,在軟色鍵的基礎上發展了線性鍵控特技(也稱透明鍵或ALPHA鍵),線性鍵合成圖像能線性地與前景圖像的透明度成比例地透過背景圖像。軟色鍵和線性鍵擴大了色鍵特技的應用范圍。線性鍵是具有半透明混合效果的鍵控特技,其鍵信號決定合成圖像中前景圖像(填充信號)后背景圖像以什么樣的透明度可見,即鍵信號根據前景圖像的透明度而線性地成比例地決定前景信號與背景信號的合成比例或混合程度。線性鍵的數學模型可用下式表示:
VOUT=VF*K+VB*(1-K)
其中VOUT為前景(填充)信號和背景信號合成后的輸出信號,VF為前景信號,VB背景信號,K為鍵信號,K值取值范圍為大于等于0而小于等于1,從該式可知,當K=1時,VOUT=VF,此時線性鍵的合成輸出就是前景(填充)信號,這種情況稱為完全疊加。當K=0時,VOUT=VB,此時線性鍵的合成輸出就是背景信號,這種情況稱為完全不疊加。當大于0而小于1時,線性鍵的合成輸出為前景(填充)信號VF和背景信號VB按照K值所決定的比例進行合成以后的圖像,合成圖像看上去是半透明的效果,透過前景可以看到背景,透明度的大小取決于鍵信號K的值。實際上,當K=0或K=1時,線性鍵就工作在硬色鍵方式,但反過來硬色鍵卻不能達到線性鍵的效果,因為硬色鍵的鍵信號K的值只有0(低電平)和1(高電平)兩個值,所以硬色鍵合成輸出要么是前景信號,要么是背景信號,不可能出現半透明的混合效果。
圖5給出了線性鍵(ALPHA鍵)原理示意圖。
二.色鍵技術應用于虛擬演播室
隨著數字電視.計算機和多媒體技術的發展,色鍵已從二維特技發展到三維特技,近幾年出現的虛擬演播室技術就是三維色鍵視頻特技的典型應用,它將活動的演播人員圖象通過色鍵方式鍵入到三維立體動畫背景之中。做到真實的演員能深入到虛擬的三維場景中,并能夠與其中的虛擬對象實時交互。在虛擬演播室中在一間蘭色屏幕代替的真實背景里進行現場表演,三維計算機圖形發生器實時產生一個逼真的虛擬環境,并按照以下程序工作:攝象機采集前景視頻信號,同時攝象機上的跟蹤定位系統實時提供攝象機移動的信息。這些數據被送至一個實時圖形計算機。從計算機的鏡頭視角再產生一個虛擬環境。以蘭色屏幕為背景拍攝的攝象機圖象,經延時后與選自計算機的虛擬背景以相同時碼進行工作,并通過數字視頻切換臺“聯合”在一起,實時產生一個組合圖象。
圖6給出了色鍵技術應用于虛擬演播室的原理示意圖。
傳統的色鍵技術與計算機技術相結合應用于虛擬演播室,成功解決了前景與背景之間的透視關系.比例關系,使合成的圖像有了極佳的立體效果,可以達到以假亂真的地步。
三.鍵控技術應用于電視播出系統
目前鍵控技術已廣泛地應用于各級電視臺的播出系統,主要用于臺標時鐘和字幕信息的疊加,所采用的方式多為并聯方式,即只將實現鍵控特技功能的鍵控混合器串接于電視播出系統視頻通道中,而將臺標時鐘機與字幕機并接于鍵混合器,如圖7所示。其優點在于簡化了電視播出系統視頻通道,提高了電視播出系統的可靠性和安全性,降低了故障率和人為差錯率,因為播出節目視頻信號經過鍵混合器而不經過臺標時鐘機和字幕機,而且即使鍵控混合器出現故障,也因為其具有掉電旁路直通功能而不影響播出節目視頻信號的傳輸。同時,采用鍵控混合器并接方式也方便了播出設備的維護和檢修,當臺標時鐘機或字幕機出現故障時,可以方便地將其拆下檢修,而不會影響視頻通道的節目播出,只是暫時無法疊加臺標時鐘或字幕信息而已。
圖8給出了鍵控混合器的原理示意。作為播出通道的關鍵設備,其必須具備以下功能:
主信號斷電直通功能(BYPASS)。
采用兩路外鍵處理方式,可同時進行底行字幕游動和臺標疊加處理。
視頻信號通道指標滿足規定的要求。
具備各種檢測功能。包括主信號在線檢測,填充信號與主信號的同步檢測。
通過對鍵控信號的處理,使得鍵控特技的混合層次靈活可選。
具備手動/遙控功能,作為播出設備,通過相應的遙控接口很容易接入自動播出系統。
鍵控混合器從使用上說分為兩種,即開關鍵和ALPHA鍵。開關鍵即前文提到的硬色鍵,其核心部分是一高速開關,開關的速度很快,一般在15ns以下,主信號和疊加信號經鉗位后分別到達二選一開關一端,鍵信號產生的控制信號用來控制開關。
自1998年6月中央電視臺率先采用半透明臺標以來,已有許多地市電視臺都選用了新型具有256級透明效果的ALPHA鍵代替了傳統的開關鍵,使字幕和臺標能出現半透明或浮雕等效果。
四.鍵控特技應用于電視后期制作
二、數字加工技術訓練
在這一課題中,我們分為兩個部分數控車和數控銑。設計課時為56學時,在數控車中,要求學生熟練使用常用指令、熟練地編程,加工中避免出現不安全的冒險動作和操作。把重點放在高效加工工藝確定、準確的走刀路線使用、程序的最佳優化上。在這樣的訓練后,讓學生按圖加工一個(手用千斤頂),不但包含數控車加工的內容,還是一個很美觀的小工具。在數控銑中,我們設計了一個精美的(首飾盒),這個產品中,要求學生必須掌握平面、臺階面、內型腔、V型槽、螺紋等項目的加工。要求學生考慮工件的裝夾、工藝的確定、保證獲得較高表面粗糙度的方法,最后組裝成一個小巧可愛的工藝品。
三、拓展創新加工訓練
這一課題為28學時,起初階段我們首先介紹了三軸、五軸加工中心的使用知識和操作方法。緊接著給學生布置拓展內容,拓展中要求學生敢于思考、敢于創新,只要學過的知識點都可以設計在要加工的工件中,按照這樣的思路先設計產品,簡述產品設計思路,再畫出CAD圖紙、擬定加工工藝及加工設備。在這些內容基本完成后教給指導老師審核,在指導老師認可的情況下就可以進行產品加工。在這一課題中,學生的思維很活躍,有些還很先進,符合拓展學習要求,如有的學生設計加工出西湖的“三潭”、荷蘭風車、國際象棋……
四、實施方法及成績評定
一般把六位學生分為一組,這樣在設計中學生可以集思廣益,在操作中又可以分工合作,最終成績評定中又是“風雨同舟”。不斷提高互相合作、患難與共的精神。如果一組成績被老師評定后,那這六個人的成績都是同一層次的。打分前,老師會對設計思路、工藝、加工易難程度當著學生的面進行點評,指出優缺點,對于存在的問題一一給予分析解答,并指出修改思路,使學生徹底掌握最優化的工藝和加工流程。通過我院數控11241和數控11242兩個班級的實踐,總體效果如下:
1.實訓課時安排充分,一共178學時。
2.涉及機械加工中的所有工種,面廣量大。
3.應用新型教學模式———拓展創新教學法。
1數控機床的故障診斷技術
①數控系統自診斷。開機自診斷數控系統在通電開機后,都要運行開機自診斷程序,對系統中關鍵的硬件和控制軟件進行檢測,并將檢測結果在CRT上顯示出來。運行自診斷運行自診斷是數控系統正常工作時,運行內部診斷程序,對系統本身、PLC、位置伺服單元以及與數控裝置相連的其他外部裝置進行自動測試、檢查,并顯示有關狀態信息和故障信息。
②在線診斷和離線診斷。在線診斷是指通過數控系統的控制程序,在系統處于正常運行狀態下,實時自動地對數控裝置、PLC控制器、伺服系統、PLC的輸入輸出和其他外部裝置進行自檢,并顯示狀態信息、故障信息。脫機診斷當數控系統出現故障時,需要停機進行檢查,這就是脫機診斷。脫機診斷的目的是修復系統的錯誤和定位故障,將故障定位在最小的范圍。
遠程診斷實現遠程診斷的數控系統,必須具備計算機網絡功能。因此,遠程診斷是近幾年發展起來的一種新型的診斷技術。數控機床利用數控系統的網絡功能通過互聯網連接到機床制造廠家,數控機床出現故障后,通過機床廠家的專業人員遠程診斷,快速確診故障。
2數控機床故障的實用診斷方法
①診斷常用的儀器、儀表及工具萬用表-可測電阻、交、直流電壓、電流。
相序表-可檢測直流驅動裝置輸入電流的相序。轉速表-可測量伺服電動機的轉速,是檢查伺服調速系統的重要依據。鉗形電流表-可不斷線檢測電流。測振儀-是振動檢測中最常用、最基本的儀器。短路追蹤儀-可檢測電氣維修中經常碰到的短路故障現象。邏輯測試筆-可測量數字電路的脈沖、電平。IC測試儀-用于數控系統集成電路元件的檢測和篩選。工具-彈頭鉤形扳手、拉錐度平鍵工具、彈性手錘、拉卸工具等。
②診斷用技術資料主要有:數控機床電氣說明書,電氣控制原理圖,電氣連接圖,參數表,PLC程序,編程手冊,數控系統安裝與維修手冊,伺服驅動系統使用說明書等。數控機床的技術資料非常重要,必須參照機床實物認真仔細地閱讀。一旦機床發生故障,在進行分析的同時查閱相關資料。
③故障處理。故障軟故障-由調整、參數設置或操作不當引起硬故障-由數控機床(控制、檢測、驅動、液氣、機械裝置)的硬件失效引起。
故障處理對策除非出現影響設備或人身安全的緊急情況,不要立即切斷機床的電源,應保持故障現場。從機床外觀、CRT顯示的內容、主板或驅動裝置報警燈等方面進行檢查。可按系統復位鍵,觀察系統的變化,報警是否消失。如消失,說明是隨機性故障或是由操作錯誤引起的。如不能消失,把可能引起該故障的原因羅列出來,進行綜合分析、判斷,必要時進行一些檢測或試驗,達到確診故障的目的。
作者:惠延嶺 單位:鄭州市國防科技學校
在數控加工中,通常粗精加工一次完成,說以粗精加工有時候放在一個工序中,所以和普車有很大區別。學習機械加工工藝文件要加工工藝參數為重點。在數控教學教學中,由于課時少,設備少,教學往往過于強調指令的學習,對于加工工藝參數的學習幾乎沒有。加工藝參數是零件質量的重要保證,提高學生對選擇合理的工藝參數學習是不可缺少的,切削用量不僅是機械加工必須確定的重要參數,而且其數值合理與否對加工質量、加工效率、生產成本等有著非常重要的影響。生產實踐表明,靈活應用切削用量,在加工中有著重要的意義,能大大地提高工作效率,提高學生對機械加工工藝文件的加工工藝參數學習是提高學生技能的保證。
機械加工工藝文件的學習是滿足現代企業的需要,有助于學生對機械加工知識有一個系統學習和提高,畢業后才能較快地入到企業的生產活動之中,在日常的教學中,加強機械加工工藝文件是系統地學習和指導作用是要培養學生的獨立分析及解決問題的能力,從而,全面提高學生車工實習教學質量和教學效果。機械加工工藝文件對有助于數控實習合理安排。機械加工工藝文件是在具體的生產條件下,把較為合理的工藝過程和操作方法,按照規定的形式書寫成工藝文件,經審批后用來指導生產。將工藝文件的內容,填入一定格式的卡片,即成為生產準備和施工依據的工藝文件。總的來說,工藝流程是綱領,加工工藝是每個步驟的詳細參數,工藝規程是某個廠根據實際情況編寫的特定的加工工藝。通過工藝文件的工藝流程可以科學的安排實習教學,對實習教學有很大的指導作用。機械加工工藝文件對有助于學生分析、解決問題能力的提高。在實習中,學生根據機械加工文件的要求獨立完成實習任務,對學生知識和技能的全面提高有指導作用。從工具、量具到刀具的選擇必須自己解決,零件雖然簡單,但需要磨外圓刀,鏜孔刀、端面刀,及相應的鉆頭、量具等工具的準備,還要自己根據加工工藝選擇加工順序,選擇切削用量等,如果沒有扎實的基本功和獨立的工作能力,想加工出來,也是不可能的。顯著提高有獨立分析解決問題的能力,機械加工工藝文件在車工實習中有助于學生對零件的作用及工作條件、表面幾何特征及組成、表面質量、材質性能方面的技術要求、結構工藝性、機加工方法達到結構要求的難易程度等進行正確的分析,以明確加工的內容及要求,從而正確地選擇加工方案,確定加工順序、走刀路線、選擇合適的機床、設計夾具、選擇刀具,確定合理的切削用量等,能提高學生知識把握的全面性。
機械加工工藝文件對安全隱患有指導作用,實習存在學生分布廣、實習場地情況各不相同等特點,首先要做到嚴格遵守實習安全操作規程,包括安全事故隱患、設備使用與維護的問題以及預防是車工實習教學管理的重中之重,一旦學生出現安全事故,將對學生、家庭、學校造成嚴重的影響。因此,教師教育學生執行安全操作規程,加強學生安全、守紀、順利地完成實習任務是不容忽視的。機械加工工藝文件中工藝參數的選擇,和工件裝夾和走到順序為實習安全提高保證。機械加工工藝文件在科學合理的規定工藝順序,加工工藝參數,時間定額等多方面內容,是科學合理安排加工重要依據,是按現代企業要求進行的,有助于學生的安全。
數控技術應用實踐教學體系分五個層次貫穿于整個本科教學的全過程:
第一層次:學科教授做學科講座,觀看數控加工錄像資料,參觀學校教學設施,培養學生學習數控技術的興趣。
第二層次:校內外結合,開展認識實習和金工實習,進行機械工程認識與訓練。
第三層次:實驗、實踐、設計和創新實踐結合,進行數控技術應用實驗與實踐教學。
第四層次:將數控技能培訓和課程設計相結合,培養學生利用數控實踐知識分析問題和解決問題的能力;并組織學生參加數控大賽、進行數控技能訓練。
第五層次:開展廣泛的創新活動,并通過畢業設計,提升學生分析問題、解決問題的能力。
2數控技術及應用實踐教學體系結構
2.1認識實習
新生入校的第一學期,組織學生觀看數控加工錄像資料,請專家教授進行數控加工技術講座,組織學生參觀學校實驗室的數控教學設備,在校外工廠參觀先進的數控加工設備及數控加工過程,使學生對數控技術有一個感性認識,提升學生學習數控技術的興趣。
2.2金工實習
學生金工實習的過程中,設置數控機床操作和自動編程等兩個數控技術的實習項目。在數控機床操作項目中利用教學型數控機床所含有的簡易自動編程軟件,讓學生自己設計加工圖案,然后自動生成加工程序,再在蠟塊或有機玻璃上雕刻出所設計的圖像,這樣極大的激發學生的學習熱情。在自動編程項目中要求學生在CAXA制造工程師軟件中完成三維實體造型,然后根據教師提示完成加工工藝設置,生成數控加工刀具路徑,最后生成數控加工程序。完成比較好的程序還可以上傳到數控機床上,加工出零件來。
2.3課程實驗
通過認識實習和金工實習,學生對數控技術建立了一個初步認識,第三學年開設數控技術及其應用課程,在課程中開設教學實驗,實驗教學圍繞課堂教學內容設置,加深學生對所學知識的理解。課程實驗開設數控機床認識實驗、數控原理實驗、數控編程實驗和數控機床操作等四個基本實驗。數控機床認識實驗通過對工業用數控機床觀察,了解數控機床(如SK50數控車床、XK715D數控立式銑床、DK77型數控電火花線切割機、數控電火花成型機等)的基本結構、加工對象及其用途;了解FANUC0i系列數控系統;掌握數控機床(如SK50數控車床、XK715D數控立式銑床等)的坐標系建立、基本運動和回零操作。數控原理實驗通過對華中數控生產的HED-21S數控系統綜合實驗臺的拆裝調試,要求學生了解數控系統的特點、基本組成和應用;了解數控系統常用部件的原理與作用;熟悉常見數控系統與數控機床的連接與基本調試操作。數控編程實驗通過在浙大辰光軟件和宇龍數控仿真模擬軟件上完成指定零件的數控加工程序編制與調試,使學生掌握數控加工程序的手工編制方法與程序調試技巧。數控機床操作實驗,通過對CGM4300B數控銑床的操作,在蠟塊上加工零件,使學生了解數控銑床的基本特點和機床坐標系的建立;掌握數控機床常規操作方法,重點學習數控機床回零操作、手動對刀操作、工件坐標系設定、程序輸入與編輯、程序調試、自動加工等操作。
2.4數控工藝技能培訓
數控高級人才的培養,必須十分注重學生動手能力的培養,我們在課余時間,充分利用學校現有的資源,對學有余力且對其感興趣的學生進行120學時的數控加工工藝培訓,培訓分為數控工藝分析、自動編程軟件(CAXA制造工程師)的應用、數控機床操作等三個方面。數控工藝培訓要求學生通過培訓具有基本零件的工序劃分、刀具卡具的選擇、工藝基準的制定、切削用量的選擇和切削液的選擇等數控加工工藝分析與設計能力。自動編程軟件的應用要求學生通過培訓,掌握功能齊全的實用型自動編程軟件,如MasterCAM,Cimatron,Delcam,CAXA等自動編程軟件,利用這些軟件編制較為復雜的零件或模具加工程序,同時具有駕馭目前國內市場上流行的集成度高的諸如CATIA、Pro/E、UG(Unigraphics)等CAD/CAM軟件的能力。數控機床操作培訓要求學生熟練掌握數控機床的各種基本操作,掌握加工程序的輸入與加工程序調試,掌握自動編程后的程序傳輸方法,掌握在線加工方法。總之,通過數控培訓增強了學生的數控技術實踐能力,培養學生創新能力。數控技能培訓將數控技術理論與實踐有機結合,鞏固理論知識,培養學生的動手能力。
2.5數控加工工藝分析與數控加工編程課程設計
為加強學生的數控技術實踐能力,機械設計制造及其自動化專業在學習了數控技術及其應用與數控加工工藝等課程后,安排數控加工工藝分析與數控編程課程設計,要求學生從零件圖的識圖開始,通過數控加工工藝分析和設計,選擇刀具、卡具(包括專用卡具的設計),然后編寫數控加工程序,并對其進行調試,最后操作數控機床,加工出要求的零件來。課程設計兩周時間,要求每個學生零件圖都不相同。課程設計開設后收到了良好的效果,達到了預期的目的。
2.6數控技術創新實驗
重視創新實踐環節,大力發掘資源,調動學生的主動性和創造性,根據不同年級的特點,分層次開展開放性數控創新實踐活動,要求學生根據學校現有的設備狀況及自身的理論知識與教師一起設計創新實驗,并在實驗的基礎上逐步完善設計內容。數控創新實踐活動基本上圍繞三個方面進行,一是圍繞產品建模、系統仿真、NC代碼生成、網絡傳輸到零件的數控加工進行;二是圍繞數控系統構建、普通機床的數控化改造、專用機床控制系統的模擬設計等內容進行,三是圍繞數控機床的故障分析與數控機床的維護維修等內容開展。通過創新實驗的設計,培養和強化學生綜合運用知識的能力、工程實踐能力和創新能力。
2.7生產實習
我們始終將生產實習環節視為強化教學效果、實現理論聯系實際的最有效手段。對高層次數控人才培養來說,生產實習基地一般選擇在數控機床制造廠。要十分重視實習基地的建設,對已建成完善的實習教學基地,實現制度化的管理。為學生的實踐能力的提高搭建一個更好的平臺。
學生在實習基地實習內容一般分為兩大部分,一是在數控機床組裝車間了解數控機床的裝配調試,包括電器部分裝配調試和機械部分裝配調試。二是在零部件制造車間掌握數控機床主要零部件的制造工藝過程,了解數控制造廠的工藝設計規程,掌握典型零件的數控加工工藝與數控加工程序的編制。三是跟隨數控機床維修人員進行售后服務,掌握數控機床維護維修的基本方法。通過生產實習,使學生進一步掌握數控機床的結構原理,更加了解數控加工工藝分析的方法和數控加工程序編制。更加強化學生的工程意識、工程實踐能力和創新意識、創新能力。
2.8數控競賽
利用校團委在校內組織數控大賽或與兄弟院校的數控對抗賽,組織學生參加兩年一屆的六部委舉辦的全國數控技能大賽,促使學生帶著問題去學習,克服了學生理論學習的盲目性,提高了學生學習的興趣與積極性,更有利于學生工程實踐能力和創新能力的提高。
2.9畢業設計
通過理論、實踐、培訓、創新四位一體的教學過程,把數控技術基礎理論、實踐能力和創新能力培養融為一體,在畢業設計中將這些知識綜合應用,培養學生綜合應用能力。學校高度重視學生的畢業設計環節,所有指導教師深入現場獲得了第一手資料,結合現場實際,精心遴選題目,提供給學生科學、合理的論文題目。為部分學生選配現場工程技術人員為畢業設計指導教師。要求學生除查閱資料外,用一定的時間到現場去學習、調研。有條件的時候,學生可直接在現場完成畢業設計。通過各種方式將畢業設計與現場實際相結合,收到良好的效果。
數控技術是用數字信息對機械運動和工作過程進行控制的技術,數控裝備是以數控技術為代表的新技術對傳統制造產業和新興制造業的滲透形成的機電一體化產品,即所謂的數字化裝備,其技術范圍覆蓋很多領域:(1)機械制造技術;(2)信息處理、加工、傳輸技術;(3)自動控制技術;(4)伺服驅動技術;(5)傳感器技術;(6)軟件技術等。
1數控技術的發展趨勢
數控技術的應用不但給傳統制造業帶來了革命性的變化,使制造業成為工業化的象征,而且隨著數控技術的不斷發展和應用領域的擴大,他對國計民生的一些重要行業(IT、汽車、輕工、醫療等)的發展起著越來越重要的作用,因為這些行業所需裝備的數字化已是現展的大趨勢。從目前世界上數控技術及其裝備發展的趨勢來看,其主要研究熱點有以下幾個方面[1~4]。
1.1高速、高精加工技術及裝備的新趨勢
效率、質量是先進制造技術的主體。高速、高精加工技術可極大地提高效率,提高產品的質量和檔次,縮短生產周期和提高市場競爭能力。為此日本先端技術研究會將其列為5大現代制造技術之一,國際生產工程學會(CIRP)將其確定為21世紀的中心研究方向之一。
在轎車工業領域,年產30萬輛的生產節拍是40秒/輛,而且多品種加工是轎車裝備必須解決的重點問題之一;在航空和宇航工業領域,其加工的零部件多為薄壁和薄筋,剛度很差,材料為鋁或鋁合金,只有在高切削速度和切削力很小的情況下,才能對這些筋、壁進行加工。近來采用大型整體鋁合金坯料“掏空”的方法來制造機翼、機身等大型零件來替代多個零件通過眾多的鉚釘、螺釘和其他聯結方式拼裝,使構件的強度、剛度和可靠性得到提高。這些都對加工裝備提出了高速、高精和高柔性的要求。
從EMO2001展會情況來看,高速加工中心進給速度可達80m/min,甚至更高,空運行速度可達100m/min左右。目前世界上許多汽車廠,包括我國的上海通用汽車公司,已經采用以高速加工中心組成的生產線部分替代組合機床。美國CINCINNATI公司的HyperMach機床進給速度最大達60m/min,快速為100m/min,加速度達2g,主軸轉速已達60000r/min。加工一薄壁飛機零件,只用30min,而同樣的零件在一般高速銑床加工需3h,在普通銑床加工需8h;德國DMG公司的雙主軸車床的主軸速度及加速度分別達12*!000r/mm和1g。
在加工精度方面,近10年來,普通級數控機床的加工精度已由10μm提高到5μm,精密級加工中心則從3~5μm,提高到1~1.5μm,并且超精密加工精度已開始進入納米級(0.01μm)。
在可靠性方面,國外數控裝置的MTBF值已達6000h以上,伺服系統的MTBF值達到30000h以上,表現出非常高的可靠性。
為了實現高速、高精加工,與之配套的功能部件如電主軸、直線電機得到了快速的發展,應用領域進一步擴大。轉1.25軸聯動加工和復合加工機床快速發展
采用5軸聯動對三維曲面零件的加工,可用刀具最佳幾何形狀進行切削,不僅光潔度高,而且效率也大幅度提高。一般認為,1臺5軸聯動機床的效率可以等于2臺3軸聯動機床,特別是使用立方氮化硼等超硬材料銑刀進行高速銑削淬硬鋼零件時,5軸聯動加工可比3軸聯動加工發揮更高的效益。但過去因5軸聯動數控系統、主機結構復雜等原因,其價格要比3軸聯動數控機床高出數倍,加之編程技術難度較大,制約了5軸聯動機床的發展。
當前由于電主軸的出現,使得實現5軸聯動加工的復合主軸頭結構大為簡化,其制造難度和成本大幅度降低,數控系統的價格差距縮小。因此促進了復合主軸頭類型5軸聯動機床和復合加工機床(含5面加工機床)的發展。
在EMO2001展會上,新日本工機的5面加工機床采用復合主軸頭,可實現4個垂直平面的加工和任意角度的加工,使得5面加工和5軸加工可在同一臺機床上實現,還可實現傾斜面和倒錐孔的加工。德國DMG公司展出DMUVoution系列加工中心,可在一次裝夾下5面加工和5軸聯動加工,可由CNC系統控制或CAD/CAM直接或間接控制。
1.3智能化、開放式、網絡化成為當代數控系統發展的主要趨勢
21世紀的數控裝備將是具有一定智能化的系統,智能化的內容包括在數控系統中的各個方面:為追求加工效率和加工質量方面的智能化,如加工過程的自適應控制,工藝參數自動生成;為提高驅動性能及使用連接方便的智能化,如前饋控制、電機參數的自適應運算、自動識別負載自動選定模型、自整定等;簡化編程、簡化操作方面的智能化,如智能化的自動編程、智能化的人機界面等;還有智能診斷、智能監控方面的內容、方便系統的診斷及維修等。
為解決傳統的數控系統封閉性和數控應用軟件的產業化生產存在的問題。目前許多國家對開放式數控系統進行研究,如美國的NGC(TheNextGenerationWork-Station/MachineControl)、歐共體的OSACA(OpenSystemArchitectureforControlwithinAutomationSystems)、日本的OSEC(OpenSystemEnvironmentforController),中國的ONC(OpenNumericalControlSystem)等。數控系統開放化已經成為數控系統的未來之路。所謂開放式數控系統就是數控系統的開發可以在統一的運行平臺上,面向機床廠家和最終用戶,通過改變、增加或剪裁結構對象(數控功能),形成系列化,并可方便地將用戶的特殊應用和技術訣竅集成到控制系統中,快速實現不同品種、不同檔次的開放式數控系統,形成具有鮮明個性的名牌產品。目前開放式數控系統的體系結構規范、通信規范、配置規范、運行平臺、數控系統功能庫以及數控系統功能軟件開發工具等是當前研究的核心。
網絡化數控裝備是近兩年國際著名機床博覽會的一個新亮點。數控裝備的網絡化將極大地滿足生產線、制造系統、制造企業對信息集成的需求,也是實現新的制造模式如敏捷制造、虛擬企業、全球制造的基礎單元。國內外一些著名數控機床和數控系統制造公司都在近兩年推出了相關的新概念和樣機,如在EMO2001展中,日本山崎馬扎克(Mazak)公司展出的“CyberProductionCenter”(智能生產控制中心,簡稱CPC);日本大隈(Okuma)機床公司展出“ITplaza”(信息技術廣場,簡稱IT廣場);德國西門子(Siemens)公司展出的OpenManufacturingEnvironment(開放制造環境,簡稱OME)等,反映了數控機床加工向網絡化方向發展的趨勢。
1.4重視新技術標準、規范的建立
1.4.1關于數控系統設計開發規范
如前所述,開放式數控系統有更好的通用性、柔性、適應性、擴展性,美國、歐共體和日本等國紛紛實施戰略發展計劃,并進行開放式體系結構數控系統規范(OMAC、OSACA、OSEC)的研究和制定,世界3個最大的經濟體在短期內進行了幾乎相同的科學計劃和規范的制定,預示了數控技術的一個新的變革時期的來臨。我國在2000年也開始進行中國的ONC數控系統的規范框架的研究和制定.4.2關于數控標準
數控標準是制造業信息化發展的一種趨勢。數控技術誕生后的50年間的信息交換都是基于ISO6983標準,即采用G,M代碼描述如何(how)加工,其本質特征是面向加工過程,顯然,他已越來越不能滿足現代數控技術高速發展的需要。為此,國際上正在研究和制定一種新的CNC系統標準ISO14649(STEP-NC),其目的是提供一種不依賴于具體系統的中性機制,能夠描述產品整個生命周期內的統一數據模型,從而實現整個制造過程,乃至各個工業領域產品信息的標準化。
STEP-NC的出現可能是數控技術領域的一次革命,對于數控技術的發展乃至整個制造業,將產生深遠的影響。首先,STEP-NC提出一種嶄新的制造理念,傳統的制造理念中,NC加工程序都集中在單個計算機上。而在新標準下,NC程序可以分散在互聯網上,這正是數控技術開放式、網絡化發展的方向。其次,STEP-NC數控系統還可大大減少加工圖紙(約75%)、加工程序編制時間(約35%)和加工時間(約50%)。
目前,歐美國家非常重視STEP-NC的研究,歐洲發起了STEP-NC的IMS計劃(1999.1.1~2001.12.31)。參加這項計劃的有來自歐洲和日本的20個CAD/CAM/CAPP/CNC用戶、廠商和學術機構。美國的STEPTools公司是全球范圍內制造業數據交換軟件的開發者,他已經開發了用作數控機床加工信息交換的超級模型(SuperModel),其目標是用統一的規范描述所有加工過程。目前這種新的數據交換格式已經在配備了SIEMENS、FIDIA以及歐洲OSACA-NC數控系統的原型樣機上進行了驗證。
2對我國數控技術及其產業發展的基本估計
我國數控技術起步于1958年,近50年的發展歷程大致可分為3個階段:第一階段從1958年到1979年,即封閉式發展階段。在此階段,由于國外的技術封鎖和我國的基礎條件的限制,數控技術的發展較為緩慢。第二階段是在國家的“六五”、“七五”期間以及“八五”的前期,即引進技術,消化吸收,初步建立起國產化體系階段。在此階段,由于改革開放和國家的重視,以及研究開發環境和國際環境的改善,我國數控技術的研究、開發以及在產品的國產化方面都取得了長足的進步。第三階段是在國家的“八五”的后期和“九五”期間,即實施產業化的研究,進入市場競爭階段。在此階段,我國國產數控裝備的產業化取得了實質性進步。在“九五”末期,國產數控機床的國內市場占有率達50%,配國產數控系統(普及型)也達到了10%。
縱觀我國數控技術近50年的發展歷程,特別是經過4個5年計劃的攻關,總體來看取得了以下成績。
a.奠定了數控技術發展的基礎,基本掌握了現代數控技術。我國現在已基本掌握了從數控系統、伺服驅動、數控主機、專機及其配套件的基礎技術,其中大部分技術已具備進行商品化開發的基礎,部分技術已商品化、產業化。
b.初步形成了數控產業基地。在攻關成果和部分技術商品化的基礎上,建立了諸如華中數控、航天數控等具有批量生產能力的數控系統生產廠。蘭州電機廠、華中數控等一批伺服系統和伺服電機生產廠以及北京第一機床廠、濟南第一機床廠等若干數控主機生產廠。這些生產廠基本形成了我國的數控產業基地。
c.建立了一支數控研究、開發、管理人才的基本隊伍。
雖然在數控技術的研究開發以及產業化方面取得了長足的進步,但我們也要清醒地認識到,我國高端數控技術的研究開發,尤其是在產業化方面的技術水平現狀與我國的現實需求還有較大的差距。雖然從縱向看我國的發展速度很快,但橫向比(與國外對比)不僅技術水平有差距,在某些方面發展速度也有差距,即一些高精尖的數控裝備的技術水平差距有擴大趨勢。從國際上來看,對我國數控技術水平和產業化水平估計大致如下。
a.技術水平上,與國外先進水平大約落后10~15年,在高精尖技術方面則更大。
b.產業化水平上,市場占有率低,品種覆蓋率小,還沒有形成規模生產;功能部件專業化生產水平及成套能力較低;外觀質量相對差;可靠性不高,商品化程度不足;國產數控系統尚未建立自己的品牌效應,用戶信心不足。.可持續發展的能力上,對競爭前數控技術的研究開發、工程化能力較弱;數控技術應用領域拓展力度不強;相關標準規范的研究、制定滯后。
分析存在上述差距的主要原因有以下幾個方面。
a.認識方面。對國產數控產業進程艱巨性、復雜性和長期性的特點認識不足;對市場的不規范、國外的封鎖加扼殺、體制等困難估計不足;對我國數控技術應用水平及能力分析不夠。
b.體系方面。從技術的角度關注數控產業化問題的時候多,從系統的、產業鏈的角度綜合考慮數控產業化問題的時候少;沒有建立完整的高質量的配套體系、完善的培訓、服務網絡等支撐體系。
c.機制方面。不良機制造成人才流失,又制約了技術及技術路線創新、產品創新,且制約了規劃的有效實施,往往規劃理想,實施困難。
d.技術方面。企業在技術方面自主創新能力不強,核心技術的工程化能力不強。機床標準落后,水平較低,數控系統新標準研究不夠。
3對我國數控技術和產業化發展的戰略思考
3.1戰略考慮
我國是制造大國,在世界產業轉移中要盡量接受前端而不是后端的轉移,即要掌握先進制造核心技術,否則在新一輪國際產業結構調整中,我國制造業將進一步“空芯”。我們以資源、環境、市場為代價,交換得到的可能僅僅是世界新經濟格局中的國際“加工中心”和“組裝中心”,而非掌握核心技術的制造中心的地位,這樣將會嚴重影響我國現代制造業的發展進程。
我們應站在國家安全戰略的高度來重視數控技術和產業問題,首先從社會安全看,因為制造業是我國就業人口最多的行業,制造業發展不僅可提高人民的生活水平,而且還可緩解我國就業的壓力,保障社會的穩定;其次從國防安全看,西方發達國家把高精尖數控產品都列為國家的戰略物質,對我國實現禁運和限制,“東芝事件”和“考克斯報告”就是最好的例證。
3.2發展策略
從我國基本國情的角度出發,以國家的戰略需求和國民經濟的市場需求為導向,以提高我國制造裝備業綜合競爭能力和產業化水平為目標,用系統的方法,選擇能夠主導21世紀初期我國制造裝備業發展升級的關鍵技術以及支持產業化發展的支撐技術、配套技術作為研究開發的內容,實現制造裝備業的跨躍式發展。
強調市場需求為導向,即以數控終端產品為主,以整機(如量大面廣的數控車床、銑床、高速高精高性能數控機床、典型數字化機械、重點行業關鍵設備等)帶動數控產業的發展。重點解決數控系統和相關功能部件(數字化伺服系統與電機、高速電主軸系統和新型裝備的附件等)的可靠性和生產規模問題。沒有規模就不會有高可靠性的產品;沒有規模就不會有價格低廉而富有競爭力的產品;當然,沒有規模中國的數控裝備最終難以有出頭之日。
在高精尖裝備研發方面,要強調產、學、研以及最終用戶的緊密結合,以“做得出、用得上、賣得掉”為目標,按國家意志實施攻關,以解決國家之急需。
在競爭前數控技術方面,強調創新,強調研究開發具有自主知識產權的技術和產品,為我國數控產業、裝備制造業乃至整個制造業的可持續發展奠定基礎。
參考文獻:
[1]中國機床工具工業協會行業發展部.CIMT2001巡禮[J].世界制造技術與裝備市場,2001(3):18-20.
長期以來,我國的數控系統為傳統的封閉式體系結構,CNC只能作為非智能的機床運動控制器。加工過程變量根據經驗以固定參數形式事先設定,加工程序在實際加工前用手工方式或通過CAD/CAM及自動編程系統進行編制。CAD/CAM和CNC之間沒有反饋控制環節,整個制造過程中CNC只是一個封閉式的開環執行機構。在復雜環境以及多變條件下,加工過程中的刀具組合、工件材料、主軸轉速、進給速率、刀具軌跡、切削深度、步長、加工余量等加工參數,無法在現場環境下根據外部干擾和隨機因素實時動態調整,更無法通過反饋控制環節隨機修正CAD/CAM中的設定量,因而影響CNC的工作效率和產品加工質量。由此可見,傳統CNC系統的這種固定程序控制模式和封閉式體系結構,限制了CNC向多變量智能化控制發展,已不適應日益復雜的制造過程,因此,對數控技術實行變革勢在必行。
2數控技術發展趨勢
2.1性能發展方向
(1)高速高精高效化速度、精度和效率是機械制造技術的關鍵性能指標。由于采用了高速CPU芯片、RISC芯片、多CPU控制系統以及帶高分辨率絕對式檢測元件的交流數字伺服系統,同時采取了改善機床動態、靜態特性等有效措施,機床的高速高精高效化已大大提高。
(2)柔性化包含兩方面:數控系統本身的柔性,數控系統采用模塊化設計,功能覆蓋面大,可裁剪性強,便于滿足不同用戶的需求;群控系統的柔性,同一群控系統能依據不同生產流程的要求,使物料流和信息流自動進行動態調整,從而最大限度地發揮群控系統的效能。
(3)工藝復合性和多軸化以減少工序、輔助時間為主要目的的復合加工,正朝著多軸、多系列控制功能方向發展。數控機床的工藝復合化是指工件在一臺機床上一次裝夾后,通過自動換刀、旋轉主軸頭或轉臺等各種措施,完成多工序、多表面的復合加工。數控技術軸,西門子880系統控制軸數可達24軸。
(4)實時智能化早期的實時系統通常針對相對簡單的理想環境,其作用是如何調度任務,以確保任務在規定期限內完成。而人工智能則試圖用計算模型實現人類的各種智能行為。科學技術發展到今天,實時系統和人工智能相互結合,人工智能正向著具有實時響應的、更現實的領域發展,而實時系統也朝著具有智能行為的、更加復雜的應用發展,由此產生了實時智能控制這一新的領域。在數控技術領域,實時智能控制的研究和應用正沿著幾個主要分支發展:自適應控制、模糊控制、神經網絡控制、專家控制、學習控制、前饋控制等。例如在數控系統中配備編程專家系統、故障診斷專家系統、參數自動設定和刀具自動管理及補償等自適應調節系統,在高速加工時的綜合運動控制中引入提前預測和預算功能、動態前饋功能,在壓力、溫度、位置、速度控制等方面采用模糊控制,使數控系統的控制性能大大提高,從而達到最佳控制的目的。
2.2功能發展方向
(1)用戶界面圖形化用戶界面是數控系統與使用者之間的對話接口。由于不同用戶對界面的要求不同,因而開發用戶界面的工作量極大,用戶界面成為計算機軟件研制中最困難的部分之一。當前INTERNET、虛擬現實、科學計算可視化及多媒體等技術也對用戶界面提出了更高要求。圖形用戶界面極大地方便了非專業用戶的使用,人們可以通過窗口和菜單進行操作,便于藍圖編程和快速編程、三維彩色立體動態圖形顯示、圖形模擬、圖形動態跟蹤和仿真、不同方向的視圖和局部顯示比例縮放功能的實現。(2)科學計算可視化科學計算可視化可用于高效處理數據和解釋數據,使信息交流不再局限于用文字和語言表達,而可以直接使用圖形、圖像、動畫等可視信息。可視化技術與虛擬環境技術相結合,進一步拓寬了應用領域,如無圖紙設計、虛擬樣機技術等,這對縮短產品設計周期、提高產品質量、降低產品成本具有重要意義。在數控技術領域,可視化技術可用于CAD/CAM,如自動編程設計、參數自動設定、刀具補償和刀具管理數據的動態處理和顯示以及加工過程的可視化仿真演示等。
(3)插補和補償方式多樣化多種插補方式如直線插補、圓弧插補、圓柱插補、空間橢圓曲面插補、螺紋插補、極坐標插補、2D+2螺旋插補、NANO插補、NURBS插補(非均勻有理B樣條插補)、樣條插補(A、B、C樣條)、多項式插補等。多種補償功能如間隙補償、垂直度補償、象限誤差補償、螺距和測量系統誤差補償、與速度相關的前饋補償、溫度補償、帶平滑接近和退出以及相反點計算的刀具半徑補償等。
(4)內裝高性能PLC數控系統內裝高性能PLC控制模塊,可直接用梯形圖或高級語言編程,具有直觀的在線調試和在線幫助功能。編程工具中包含用于車床銑床的標準PLC用戶程序實例,用戶可在標準PLC用戶程序基礎上進行編輯修改,從而方便地建立自己的應用程序。
(5)多媒體技術應用多媒體技術集計算機、聲像和通信技術于一體,使計算機具有綜合處理聲音、文字、圖像和視頻信息的能力。在數控技術領域,應用多媒體技術可以做到信息處理綜合化、智能化,在實時監控系統和生產現場設備的故障診斷、生產過程參數監測等方面有著重大的應用價值。
2.3體系結構的發展
(1)集成化采用高度集成化CPU、RISC芯片和大規模可編程集成電路FPGA、EPLD、CPLD以及專用集成電路ASIC芯片,可提高數控系統的集成度和軟硬件運行速度。應用FPD平板顯示技術,可提高顯示器性能。平板顯示器具有科技含量高、重量輕、體積小、功耗低、便于攜帶等優點,可實現超大尺寸顯示,成為和CRT抗衡的新興顯示技術,是21世紀顯示技術的主流。應用先進封裝和互連技術,將半導體和表面安裝技術融為一體。通過提高集成電路密度、減少互連長度和數量來降低產品價格,改進性能,減小組件尺寸,提高系統的可靠性。
(2)模塊化硬件模塊化易于實現數控系統的集成化和標準化。根據不同的功能需求,將基本模塊,如CPU、存儲器、位置伺服、PLC、輸入輸出接口、通訊等模塊,作成標準的系列化產品,通過積木方式進行功能裁剪和模塊數量的增減,構成不同檔次的數控系統。
(3)網絡化機床聯網可進行遠程控制和無人化操作。通過機床聯網,可在任何一臺機床上對其它機床進行編程、設定、操作、運行,不同機床的畫面可同時顯示在每一臺機床的屏幕上。
(4)通用型開放式閉環控制模式采用通用計算機組成總線式、模塊化、開放式、嵌入式體系結構,便于裁剪、擴展和升級,可組成不同檔次、不同類型、不同集成程度的數控系統。閉環控制模式是針對傳統的數控系統僅有的專用型單機封閉式開環控制模式提出的。由于制造過程是一個具有多變量控制和加工工藝綜合作用的復雜過程,包含諸如加工尺寸、形狀、振動、噪聲、溫度和熱變形等各種變化因素,因此,要實現加工過程的多目標優化,必須采用多變量的閉環控制,在實時加工過程中動態調整加工過程變量。加工過程中采用開放式通用型實時動態全閉環控制模式,易于將計算機實時智能技術、網絡技術、多媒體技術、CAD/CAM、伺服控制、自適應控制、動態數據管理及動態刀具補償、動態仿真等高新技術融于一體,構成嚴密的制造過程閉環控制體系,從而實現集成化、智能化、網絡化。
一、國內外數控系統發展概況
目前,數控技術正在發生根本性變革,由專用型封閉式開環控制模式向通用型開放式實時動態全閉環控制模式發展。在集成化基礎上,數控系統實現了超薄型、超小型化;在智能化基礎上,綜合了計算機、多媒體、模糊控制、神經網絡等多學科技術,數控系統實現了高速、高精、高效控制,加工過程中可以自動修正、調節與補償各項參數,實現了在線診斷和智能化故障處理;在網絡化基礎上,CAD/CAM與數控系統集成為一體,機床聯網,實現了中央集中控制的群控加工。長期以來,我國的數控系統為傳統的封閉式體系結構,CNC只能作為非智能的機床運動控制器。加工過程變量根據經驗以固定參數形式事先設定,加工程序在實際加工前用手工方式或通過CAD/CAM及自動編程系統進行編制。CAD/CAM和CNC之間沒有反饋控制環節,整個制造過程中CNC只是一個封閉式的開環執行機構。在復雜環境以及多變條件下,加工過程中的刀具組合、工件材料、主軸轉速、進給速率、刀具軌跡、切削深度、步長、加工余量等加工參數,無法在現場環境下根據外部干擾和隨機因素實時動態調整,更無法通過反饋控制環節隨機修正CAD/CAM中的設定量,因而影響CNC的工作效率和產品加工質量。由此可見,傳統CNC系統的這種固定程序控制模式和封閉式體系結構,限制了CNC向多變量智能化控制發展,已不適應日益復雜的制造過程,因此,對數控技術實行變革勢在必行。
二、數控技術發展趨勢
(一)性能發展方向
(1)高速高精高效化。速度、精度和效率是機械制造技術的關鍵性能指標。由于采用了高速CPU芯片、RISC芯片、多CPU控制系統以及帶高分辨率絕對式檢測元件的交流數字伺服系統,同時采取了改善機床動態、靜態特性等有效措施,機床的高速高精高效化已大大提高。(2)柔性化。包含兩方面:數控系統本身的柔性,數控系統采用模塊化設計,功能覆蓋面大,可裁剪性強,便于滿足不同用戶的需求;群控系統的柔性,同一群控系統能依據不同生產流程的要求,使物料流和信息流自動進行動態調整,從而最大限度地發揮群控系統的效能。(3)工藝復合性和多軸化。以減少工序、輔助時間為主要目的的一種復合加工,正朝著多軸、多系列控制功能方向發展。數控機床的工藝復合化是指工件在一臺機床上一次裝夾后,通過自動換刀、旋轉主軸頭或轉臺等各種措施,完成多工序、多表面的復合加工。數控技術軸,西門子880系統控制軸數可達24軸。(4)實時智能化。而人工智能則試圖用計算模型實現人類的各種智能行為。
(二)功能發展方向
(1)用戶界面圖形化。用戶界面是數控系統與使用者之間的對話接口。由于不同用戶對界面的要求不同,因而開發用戶界面的工作量極大,用戶界面成為計算機軟件研制中最困難的部分之一。圖形用戶界面極大地方便了非專業用戶的使用,人們可以通過窗口和菜單進行操作,便于藍圖編程和快速編程、三維彩色立體動態圖形顯示、圖形模擬、圖形動態跟蹤和仿真、不同方向的視圖和局部顯示比例縮放功能的實現。(2)科學計算可視化。科學計算可視化可用于高效處理數據和解釋數據,使信息交流不再局限于用文字和語言表達,而可以直接使用圖形、圖像、動畫等可視信息。可視化技術與虛擬環境技術相結合,進一步拓寬了應用領域,如無圖紙設計、虛擬樣機技術等,這對縮短產品設計周期、提高產品質量、降低產品成本具有重要意義。(3)多媒體技術應用。多媒體技術集計算機、聲像和通信技術于一體,使計算機具有綜合處理聲音、文字、圖像和視頻信息的能力。在數控技術領域,應用多媒體技術可以做到信息處理綜合化、智能化,在實時監控系統和生產現場設備的故障診斷、生產過程參數監測等方面有著重大的應用價值。
(三)體系結構的發展
(1)集成化。采用高度集成化CPU、RISC芯片和大規模可編程集成電路FPGA、EPLD、CPLD以及專用集成電路ASIC芯片,可提高數控系統的集成度和軟硬件運行速度。應用FPD平板顯示技術,可提高顯示器性能。平板顯示器具有科技含量高、重量輕、體積小、功耗低、便于攜帶等優點,可實現超大尺寸顯示,成為和CRT抗衡的新興顯示技術,是21世紀顯示技術的主流。應用先進封裝和互連技術,將半導體和表面安裝技術融為一體。通過提高集成電路密度、減少互連長度和數量來降低產品價格,改進性能,減小組件尺寸,提高系統的可靠性。(2)模塊化。硬件模塊化易于實現數控系統的集成化和標準化。根據不同的功能需求,將基本模塊,如CPU、存儲器、位置伺服、PLC、輸入輸出接口、通訊等模塊,作成標準的系列化產品,通過積木方式進行功能裁剪和模塊數量的增減,構成不同檔次的數控系統。(3)網絡化。機床聯網可進行遠程控制和無人化操作。通過機床聯網,可在任何一臺機床上對其它機床進行編程、設定、操作、運行,不同機床的畫面可同時顯示在每一臺機床的屏幕上。(4)通用型開放式閉環控制模式。由于制造過程是一個具有多變量控制和加工工藝綜合作用的復雜過程,包含諸如加工尺寸、形狀、振動、噪聲、溫度和熱變形等各種變化因素,因此,要實現加工過程的多目標優化,必須采用多變量的閉環控制,在實時加工過程中動態調整加工過程變量。加工過程中采用開放式通用型實時動態全閉環控制模式,易于將計算機實時智能技術、網絡技術、多媒體技術、CAD/CAM、伺服控制、自適應控制、動態數據管理及動態刀具補償、動態仿真等高新技術融于一體,構成嚴密的制造過程閉環控制體系,從而實現集成化、智能化、網絡化。
三、智能化新一代PCNC數控系統
當前開發研究適應于復雜制造過程的、具有閉環控制體系結構的、智能化新一代PCNC數控系統已成為可能。智能化新一代PCNC數控系統將計算機智能技術、網絡技術、CAD/CAM、伺服控制、自適應控制、動態數據管理及動態刀具補償、動態仿真等高新技術融于一體,形成嚴密的制造過程閉環控制體系。
參考文獻:
基地大規模建設應前取得測試部分,以了解各種各樣的機械性能的相關的互相之間的相互配合的情況,并且做好相應的協調狀況的準備,以找出最佳的機械和設備的類型、軋制設備軋制通過和軋制速度的組合,從而也能得到準確的擴散系數等相關的數據,來確定精確的擴散的厚度的數據,并編寫測試的部分摘要,用于指導未來的更大規模的建設。
1.2水穩定碎石混合料
生產水泥穩定碎石混合料的質量直接確定水質穩定的基礎要點,因此,必須在混合過程中就加以控制,以保證生產出合格的水泥穩定碎石混合料。水泥用量檢查。在混合料生產過程,在任何時間來檢測水泥用量,應該在生產的過程的從始至終都要檢查水泥的進料孔是否堵塞,以確保水泥的比例合適。混合物分級調整。由于生產條件的各種因素的限制,生產的混合物分級往往有很大變化,生產過程必須混合物篩選試驗。但在卸貨口帶代表混合,正確調整體重總比例。原料水分含量檢測。由于聚合天然含水率的變化,調節原料水的消耗量,確定生產過程中的混合物水分的含量略大于最佳的含水量。
1.3高程和板形的控制
施工水泥穩定碎石采用的專用攤鋪機,從而使得平整度、高程的合格率得到了極大地改善。松擴散厚度=松擴散系數×設計水穩定層厚度。在這個水準測量方法,參考鋼絲繩順利與否直接影響到鋪設和水穩定層高度和平坦.
1.4軋制過程控制
結束后的水混合碾壓混凝土的延遲時間水泥穩定碎石混合料強度、干密度會有非常明顯的影響,延遲時間較長,混合強度和干密度的損失會非常地大,延遲時間強度也會受到很大的影響。所以水泥穩定碎石工作壓力必須嚴格控制時間,以更好地控制強度和壓實度保證水泥穩定碎石。因此,必須及時地通過混合,及時完成運輸、及時地做好鋪路工作,及時的進行滾動操作,以保證延遲檢查的時間最多不會超過3小時的時長。往復式的作業應該是在不同的地方進行停車扭轉的操作,每當完成一個重復的滾動滾作將使對攤鋪機推得更近一些,以避免出現在同一節停車的事情從而引起縮進。壓實應道路兩旁的肩膀道路中心方向滾動,有兩個滾動輪應該重疊1/2輪寬,道路兩旁的應該是壓力的2~3倍,保證壓實度。軋制的速度應該是要緩慢一點的,前兩次的操作速度最好能夠控制在1.5公里/小時,之后可以使用2.5公里/小時,直到程度的壓實試驗合格。不同的結構部分,應該在路的盡頭在建筑的垂直在RCC切除在緩坡水泥穩定碎石,以便未來建設連接。
1.5建設養護泥漿穩定碎石
壓實成型、水泥在最后一集(通常是6~7小時)開始噴水滅火養生。養生期限不得少于7天,并且在健康必須始終確保表面潤濕。養生應該關閉在運輸、禁止車輛通行。
2施工技術質量控制措施
本文從路基的質量控制措施和防止路基開裂兩個方面來論述路基基層的質量控制措施,路基防裂是道路質量的一個非常重要的關鍵因素,道路的好壞很大程度上要看建設完成后會不會出現開裂的情況,然而這些問題都要在道路建設的初期就開始規劃和預防,并且采取相應的控制措施,為施工整體質量打下堅實的基礎。
2.1路基質量控制
(一)路基土的控制路基一般是首先用自然土填筑的。在軟土層路基填筑自然土壤的測試分析之前,確定其物理相關的屬性。確定適用的最佳含水量、以通過數據等定量指標來準確地指導路基施工和對路基填成品進行的相關的測試,從試驗的測試的結果來分析:土壤粒子越細,其相應的回彈模量就會越低,和砂性土回彈模量也將會相應地越高。
(二)壓實度控制在土壤的最佳含水量在壓實之后可以達到一個壓實最大密度之前就要確保得到一個最好的土壤含水量,因此,在路基填壓實的過程中,必須始終做好土壤含水量的控制工作。當土壤的含水率太高時,應該在空氣的干燥的最佳含水量的時候進行填筑的施工操作過程中應該進行連續的相應操作,以減少過多的雨水或使土壤過多地暴露于陽光,這樣就能夠做到防止土壤含水量產生巨大的期間變化等情況的出現,從而保證施工質量。
2.2裂縫的預防
高速公路的建設通常都會采用整體道床,這種整體道床的裂紋物種大致基本上可以主要分為兩個大類,即第一種是由于行車荷載的反復作用而產生的裂縫,因為整個道床基地在一定的拉伸應力當超過彎曲的強度和生產的;第二種是倚重不規則網狀裂縫的的基本裂縫所形成的重度反射性的裂縫, 其一般面對自己的產生溫度裂縫,這是第一種,這類屬于非負載性的裂紋,應當將這兩種裂縫的出現的可能性進行充分考慮進行相應的道路設計和施工設計。在構建良好的質量控制是解決第一種裂紋。
(一)整體道床基地裂縫的控制和施工時所要考慮的水泥種的穩定性材料的機理的裂縫、收縮性較小的水泥的穩定類結構的基本單位的選擇有著很大的關系,它會產生收縮主要有兩中原因,即塑性指數和材料含水率都是相關的,材料的塑料的指數測試和干燥收縮和溫度收縮。在建設的過程中可以通過使用抑制堿劑的一系列的此類方法可以,盡量使水泥的穩定材料來達到水泥的最佳含水量,以此確保更少地出現道路裂縫的問題。
2基于組件技術的實時測控軟件開發
2.1軟件架構設計
在組件技術中,一個組件就是一個接口集,它通過接口對功能進行封裝。因此,對于同一個應用程序架構,只要其使用的接口集合不變,即可通過更換支持同樣接口集的組件來獲得不同應用,也可重復利用同一個組件或對組件進行二次開發。而基于組件建立的軟件架構和應用開發,其最大優點在于可以復用的應用結構和軟件單元。實時測控軟件主要是對實時測控數據的處理、評估和顯示,而測控數據主要包括光測、雷測、遙測及GPS測量等類型,其處理過程通常包括數據采集、數據解析、數據處理和結果評估等四個部分,針對以上4種數據類型,在基于組件技術思想下,其處理架構可統一進行設計,如圖1所示。針對靶場測控系統中光測、雷測、遙測及GPS測量等數據處理應用,通過將數據采集組件、數據解析組件、數據處理組件、結果評估組件替換成相應功能的組件,即可實現在保持軟件架構不變的前提下開發出不同的應用系統。
2.2基于組件技術的軟件升級維護
組件接口是對某一功能的一套抽象描述,具有封裝性,它通過接口與其功能實現分離開了,并以接口作為客戶與組件(或組件之間)交互的唯一方式,因此,只要保持接口不變,就可以將系統中的組件用新的組件替換,以隨時進行系統升級維護。下面以實時測控數據處理軟件中的雷測數據處理應用為例,其軟件的架構如圖2所示。當需要對系統進行升級維護時,在軟件架構完全保持不變的前提下,對具體的組件進行替換,只要保持接口不變,程序無需重新編譯鏈接,系統即可通過使用更新后組件中的新接口來獲得新特性,從而實現系統的升級維護。
2.3利用組件復用技術實現軟件功能擴展
組件復用是利用已有組件創建新組件,即通過第三方產品來構建自己產品。組件復用是通過包容和聚合來實現的,包容時外部組件包含內部組件的接口,它由外部組件接收此調用請求再交由內部組件來處理,聚合時外部組件直接調用內部組件的接口,它讓內部組件直接處理該調用請求。在C++語言,通過在外部組件中增加內部組件接口,并把調用請求轉發給內部組件即可實現包容,對于聚合,在內部組件中維護一個外部組件接口指針(如m_pUnknownOuter),通過委托機制,讓內部組件接口提出的查詢接口請求由一個委托接口轉發至外部組件,再由外部組件接口查詢內部組件。這樣就可以實現一致的訪問,即不管是通過外部組件的接口,還是內部組件的接口,都可以查詢到內外組件所支持的接口集合。在實際應用中,軟件開發不僅有大量的、功能強大的商業化組件可以使用,而且有應用廣泛的、成熟的靶場測控系統專用組件可以使用,如組件化的數據接收、量綱復用、坐標轉換、濾波平滑、精度評估等功能模塊。因此,利用好組件復用技術可以有效擴展靶場測控數據處理系統的軟件功能,對于靶場測控系統建設具有重要的現實意義。