時間:2022-11-28 14:58:19
序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇電力電子范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。
電力電子技術分為電力電子器件制造技術和交流技術(整流,逆變,斬波,變頻,變相等)兩個分支。現已成為現代電氣工程與自動化專業不可缺少的一部分。
一、電力電子學
電力電子學(Power Electronics)這一名稱是在上世紀60年代出現的。1974年,美國的W.Newell用一個倒三角形(如圖)對電力電子學進行了描述,認為它是由電力學、電子學和控制理論三個學科交叉而形成的。這一觀點被全世界普遍接受。“電力電子學”和“電力電子技術”是分別從學術和工程技術2個不同的角度來稱呼的。
利用電力電子器件實現工業規模電能變換的技術,有時也稱為功率電子技術。一般情況下,它是將一種形式的工業電能轉換成另一種形式的工業電能。例如,將交流電能變換成直流電能或將直流電能變換成交流電能;將工頻電源變換為設備所需頻率的電源;在正常交流電源中斷時,用逆變器(見電力變流器)將蓄電池的直流電能變換成工頻交流電能。應用電力電子技術還能實現非電能與電能之間的轉換。例如,利用太陽電池將太陽輻射能轉換成電能。與電子技術不同,電力電子技術變換的電能是作為能源而不是作為信息傳感的載體。因此人們關注的是所能轉換的電功率。
電力電子技術是大功率的電技術,又大多是為應用強電的工業服務的,故常將它歸屬于電工類。電力電子技術的內容主要包括電力電子器件、電力電子電路和電力電子裝置及其系統。電力電子器件以半導體為基本材料,最常用的材料為單晶硅;它的理論基礎為半導體物理學;它的工藝技術為半導體器件工藝。近代新型電力電子器件中大量應用了微電子學的技術。電力電子電路吸收了電子學的理論基礎,根據器件的特點和電能轉換的要求,又開發出許多電能轉換電路。這些電路中還包括各種控制、觸發、保護、顯示、信息處理、繼電接觸等二次回路及電路。利用這些電路,根據應用對象的不同,組成了各種用途的整機,稱為電力電子裝置。這些裝置常與負載、配套設備等組成一個系統。電子學、電工學、自動控制、信號檢測處理等技術常在這些裝置及其系統中大量應用。
二、電力電子技術的應用作用
1、優化電能使用。通過電力電子技術對電能的處理,使電能的使用達到合理、高效和節約,實現了電能使用最佳化。例如,在節電方面,針對風機水泵、電力牽引、軋機冶煉、輕工造紙、工業窯爐、感應加熱、電焊、化工、電解等14個方面的調查,潛在節電總量相當于1990年全國發電量的16%,所以推廣應用電力電子技術是節能的一項戰略措施,一般節能效果可達10%-40%,我國已將許多裝置列入節能的推廣應用項目。
2、改造傳統產業和發展機電一體化等新興產業。據發達國家預測,今后將有95%的電能要經電力電子技術處理后再使用,即工業和民用的各種機電設備中,有95%與電力電子產業有關,特別是,電力電子技術是弱電控制強電的媒體,是機電設備與計算機之間的重要接口,它為傳統產業和新興產業采用微電子技術創造了條件,成為發揮計算機作用的保證和基礎。
3、電力電子技術高頻化和變頻技術的發展,將使機電設備突破工頻傳統,向高頻化方向發展。實現最佳工作效率,將使機電設備的體積減小幾倍、幾十倍,響應速度達到高速化,并能適應任何基準信號,實現無噪音且具有全新的功能和用途。
4、電力電子智能化的進展,在一定程度上將信息處理與功率處理合一,使微電子技術與電力電子技術一體化,其發展有可能引起電子技術的重大改革。有人甚至提出,電子學的下一項革命將發生在以工業設備和電網為對象的電子技術應用領域,電力電子技術將把人們帶到第二次電子革命的邊緣。
三、電力電子技術器件
02年出現了第一個玻璃的汞弧整流器。1910年出現了鐵殼汞弧整流器。用汞弧整流器代替機械式開關和換流器,這是電力電子技術的發端。1920年試制出氧化銅整流器,1923年出現了硒整流器。30年代,這些整流器開始大量用于電力整流裝置中。20世紀40年代末出現了晶體管。20世紀50年代初,晶體管向大功率化發展,同時用半導體單晶材料制成的大功率二極管也得到發展。1954年,瑞典通用電機公司(ASEA公司)首先將汞弧管用于高壓整流和逆變,并在±100千伏直流輸電線路上應用,傳輸20兆瓦的電力。1956年,美國人J.莫爾制成晶閘管雛型。1957年,美國人R.A.約克制成實用的晶閘管。50年代末晶閘管被用于電力電子裝置,60年代以來得到迅速推廣,并開發出一系列派生器件,拓展了電力電子技術的應用領域。 電力電子電路 隨著晶閘管應用的推廣,開發出許多電力電子電路。
四、電力電子電路器件類別
1、將交流電能轉換成直流電能的整流電路;
2、將直流電能轉換成交流電能的逆變電路;
3、將一種形式的交流電能轉換成另一種形式的交流電能的交流變換電路;
4、將一種形式的直流電能轉換成另一種形式的直流電能的直流變換電路。這些電路都包含晶閘管,而每個晶閘管都需要相應的觸發器。于是配合這些電力電子電路出現了許多的觸發控制電路。
五、電子電路器件分類
1、控制電路主要由分立的電子元件(如晶體管、二極管)組成。直到80年代后期,還用得不少。
關鍵詞:
電力電子技術;電力系統;應用
1引言
作為一個具有較強專業性、綜合性和系統性的技術平臺,電力電子技術其涵蓋了多個領域的專業技術內容。經過長時間的發展和變化,其被廣泛的應用于各個行業當中,極大幅度地推動了我國電力能源領域的發展。隨著科學技術的不斷發展進步,電力系統中的電力電子技術的應用范圍和深度也得到了進一步的增加。電力電子技術的應用,提高了電力系統的整體工作效率和工作性能。電力電子技術應用于電力系統的整個發電、配電、輸電已基本檢點的環節當中,是現代電力系統發展建設中的重點內容。電力電子技術應用于電力系統中,可以有效地提高變電控制的整體效果。我國電網建設工作一直在有條不紊的開展,不斷擴大的電網規模對于變電運行管理提出了更高的要求。通過電力電子技術的應用,可以實現高效、高質量、高精度、高性能的控制和管理,有效地降低了管理成本和工作難度,提高了系統運行的安全性和穩定性。在電力系統運行的過程中,電力電子技術的應用可以有效地實現對電力系統運行的實時監控和管理,有效地提高了電力系統運行中的容錯效果,減少了后期管理維護的難度和成本,讓電力系統的運行更加可靠。電力電子技術的應用通過結合先進的信息化管理技術,讓電力系統運行中的相關數據信息可以得到更加全面的收集和處理,通過計算機對相關數據進行分析處理,為管理決策的制定和計劃的編制提供科學的依據。
2電力電子技術在電力系統中的應用
第一,發電環節的應用。電力系統的發電環節是一個較為復雜的綜合性系統,其中存在多個發電組和相關設備,設備的結構相對復雜,并且整體技術含量相對較高。相關技術人員必須要具有專業的技術水平,才能完成相關設備的設計、運行、管理與維護工作。在電力系統的發電環節,應用電力電子技術,可以有效地提高整個發電系統的設備工作效率。勵磁控制是現階段廣為運用的發電機控制方式,其通過利用品閘管整流電路的方式來實現設備的連接,整個控制系統的結構相對簡單,具有較高的可靠性,并且造價成本也處于一個可接受的狀態之下,性能可以有效地滿足相關技術需求。而靜止勵磁的控制方式,則通過對勵磁機進行改造,去除慣性環節,從而達到提高穩定性和運行效果的目的。科學的整改方案,可以更好地結合電力系統的運行規律來實現控制,讓電氣工作效率得到更好的保障。變速勵磁控制的方式,主要通過變頻設備,對于發電中機組運行速度進行相應的調節和控制,提高電力功效,讓機組的變化速率處于一個自動控制的狀態下,結合勵磁設備的控制,讓整個功率的輸出更加穩定、高效,并最大程度地降低系統的功耗,其被廣泛應用于風力發電和水力發電的過程中。在發電廠發電設備中,其發電設備的用電量是客觀存在的,并且在整個設備的耗電量中占據著一個較高的比例。為了實現對這類能源消耗問題的有效控制,變頻器的出現和應用已經被廣泛的認可和利用。變頻器通過控制,可以對發電機機組的工作頻率進行自動調節,從而實現對能源消耗的節約。在電力電子技術不斷發展的形勢下,各類變頻技術逐漸得到了更加深入的發展,并為提高發電系統的工作效率,減少能耗提供了巨大的幫助。第二,輸電環節的應用。在現代科學技術不斷發展的趨勢下,電力電子技術的發展與應用,使得越來越多的電子器件得到了生產和運用,為電力系統的發展創造了更多的平臺和支持。在輸電系統中,電力電子器件的運用,有效地對于電網穩定性進行了保障,提高了電網運行的可靠性,讓電網運行發展更加安全、可靠。在當前電力系統的輸電環節中,直流與輕型直流輸電是較為常見的兩種方式。這種輸電方式可以有效地提高輸電的容量,并且可以靈活地進行調節與控制,輸電過程較為穩定,并且實現了對長距離電力傳輸帶支持和供應。針對于不同的電力輸送需求,可以采取不同的輸電方式,讓直流輸電技術的優勢得到最大限度的發揮。隨著技術的進步,柔流輸電技術也逐漸受到了關注和應用。柔流輸電技術融合了微電子、微處理、電力電子技術、控制技術以及通信技術等多方面的技術,實現了對交流輸電的靈活控制,讓交流電網的穩定性得到了很好的保障,并有效地降低了輸電成本。柔流輸電技術通過為電網提供無功功率和感應,從而達到提高輸電效率和質量的目的。第三,配電環節的應用。在配電環節中,有效地控制是確保電能質量的關鍵。電能質量的控制需要在配電過程中對于頻率、諧波、電壓等要求進行有效地滿足,并且對干擾和瞬態波動問題的干擾進行避免。現階段,電力電子技術應用的過程中,基于DFACTS的電能質量調節裝置的應用,可以有效地對電能質量進行保證。隨著柔流輸電系統的發展和成熟,配電質量的控制方式得到了豐富和進一步的發展。DFACTS技術可以被視為縮小版的FACTS設備技術,二者工作原理、性能、結構、功能都存在一定的相似性。隨著電力電子器件不斷發展,市場上電氣設備出現求過于供的現象,DFACTS設備市場前景廣闊,市場需求量。DFACTS設備市場介入相對容易。而且該設備的成本投入比較少,技術開發比較簡單。隨著市場不斷發展,DFACTS設備產品將進入高速發展狀態。
3結束語
總而言之,隨著科學技術水平的不斷提高,各類新技術的出現和應用,電力電子技術的發展也逐漸步入了新的階段。相關技術人員應該加強對新技術的研究和應用,對新技術的優勢進行充分的發揮,更好地促進電力系統的發展和完善,提高電力生產效率,為我國電力事業健康穩定發展做出更大的貢獻。
作者:李西娟 單位:中煤邯邢技校
參考文獻:
電力電子技術的應用能夠讓我國的民用電力設備效果得到大幅度的提升,讓我國人民的用電質量感受到明顯的變化。如今是一個科技化的時代,所以針對一些用電量較大的工業企業來說,電力電子技術的應用將會有助于其改造傳統工業的生產工藝,讓企業能夠將工作效率得到進一步的提升,并且穩步的邁向機電一體化的隊伍當中。
1.2智能化發展
我國的電力電子技術已經進入到了一個相對成熟的階段,而國家的相關科研單位也開始著手在其中加入更為高端的科技手段。這種做法不僅有利于電力系統的向前發展,同時還會增加電力電子技術的使用范圍,讓其更加的智能化與人性化。
1.3電力電子技術的高頻化
伴隨著電力電子技術的廣泛使用,為了讓其能夠更好的為我國的電力系統服務,已經開始逐漸的對傳統技術手段進行了突破,將運行系統不斷的高頻化。這樣不但節約了企業的設備占地面積,同時還從很大程度上提升了電力系統的運行效率。
2電力電子技術在電網中的應用現狀
2.1在發電系統中的應用
發電系統是整個國家電網中的重中之重,那么電力電子技術在這個系統中的應用也將起到至關重要的作用。其主要的功能為改善發電設備的運用效率以及調節運行系統中的功能效率等,其中包括發電機勵磁的控制、恒頻、以及水泵的調速等等。電力電子技術主要應用的是晶閘管在勵磁中的價格、性能、結構等優勢,從而保證其能夠更完美的應用與電力系統當中。除此之外,在風力以及水力發電機的操控當中,電力電子技術主要依靠的是變頻電源來掌控轉子勵磁電流的轉換頻率,以保證電力能源能夠發揮出最大的有效使用功效。在我國的各大企業中,能夠制造高壓力變頻器的實屬鳳毛麟角,所以電力電子技術將有效的填補這一部分的空白。
2.2在輸電系統中的應用
電力電子技術在我國電網的輸電系統中主要應用的是柔流輸電技術,這種技術能夠將電力系統中的電壓、功率、相位角進行有效的控制與調節。在電力能源進行輸送的過程當中,難免會出現不同程度上的消耗,而這種技術的應用將從很大程度上將其輸電能力的穩定性進行改善。針對我國電網目前的情況來看,如果采取遠距離高壓直流輸電的話將會相比交流輸電降低很大一部分的損耗,因為直流輸電將避免電抗壓降的問題,并且還會降低電纜網線等設備的投入資金,這樣不僅能夠解決穩定性差的問題,同時還會緩解企業的經濟壓力。
2.3在配電系統中的應用
在配電系統中最為重要的就是提高電力能源的質量和供電系統的穩定性。而這兩項是否能夠過關將取決與電壓、不對稱度以及頻率等相關因素的質量能不能達到標準。而電力電子技術在國外的一些大企業當中也取得了比較成功的成績,并且也為企業帶去了相當可觀的經濟收益。電力電子技術可簡稱為DFACTS技術,在配電系統的應用中可以被理解為是一種控制單利能源質量的新型技術。與此同時,由于DFACTS設備同FACTS設備的功能與使用方法大致相同,所以DFACTS的設備也可以被理解為是FACTS的濃縮版本。
2.4在節能環節中的應用
節約電能大致包括兩個方面:電動機的節電潛力和電動機的調速節電技術,這兩中節能方法有效的相結合才能夠形成一個比較完善的節能體系。就我國目前的形式來看,交流調速技術已經被廣泛的應用到了礦山以及煉金等重金屬行業中,而在國外較發達的國家中,在水泵以及風機等設備的運行中也都相繼的應用了交流調速技術。
【關鍵詞】
大功率;電力電子技術;可靠供電系統;研究
1前言
大功率電力電子技術在電力系統中發揮著重要的作用,主要涉及到了電力系統的發電、輸電、配電以及用電等方面。實現大功率電力電子技術供電可靠性,在本文中從兩方面進行分析,第一,提升大功率電力電子技術的供電可靠性,可以通過提高工業敏感負荷的供電可靠性來實現;第二,將大功率的電子技術應用于發電機勵磁系統中,以提升發電機的阻尼轉矩,來實現系統的動態可靠性提升。
2大功率電力系統可靠性供電概述
從敏感負荷角度對電力系統供電可靠性進行分析。實現供電的可靠性不僅要求電力系統中不能長時間斷電,還需要對電力供電系統的動態電壓質量提出更高的要求。對系統中的電壓跌落以及電壓短時中斷的時間進行限定,在實際供電中,不同的電壓跌落中,其敏感負荷所能夠承受的電壓跌落時間存在著差異性。在一般規律下,跌落幅度越大,其敏感負荷所能夠才承受的時間越短。傳統的供電可靠性統計統計,只能以停電時間超過1分鐘或者5分鐘實際依據。在我國,對于自動重合閘成功或者備用電源投入成功的現象不能視為用戶停電,而此時敏感負荷用戶有可能遭受到一定的電力損失。那么在實際的電力系統供電中,提升供電的可靠性,需要從電網方面進行綜合考慮,以優化的配電網結構,改善動態帶電壓質量[1]。
3大功率電力電子技術提高供電可靠性的應用
3.1轉換開關轉換開關電源供電中發揮著重要的作用,在實際電力系統電源供電中,包含兩路或者多路的電源供電,轉換開關應用其中,能夠實現多路電源之間的相互切換。在本文中以兩路電源供電為例進行分析,當有一個電源電路在正常供電時,則另外一個線路中的電源供電就會處于備用狀態。一旦線路中出現線常用電源供電異常的情況時,轉換開關開始發揮作用,自動切換到被用電源線路中。以轉換開關的形式,實現線路正常供電,其開關投入使用成本較低,應用廣泛[2]。
3.2動態電壓恢復器動態電壓恢復器簡稱DVR,DVR通過線路中的變壓器串聯在線路電源與敏感負荷之間。當線路正常輸電時,線路中在沒有產生電壓跌落的情況,DVR完全不發揮作用,其在線路中所輸出的電壓補償為0。當線路中出現了較大的電壓跌落時,此時,DVR就會發揮其真正的作用,DVR通過自身輸出與跌落電壓值相同的電壓補償值,來實現線路中的電壓補償。線路中所補償的線路電壓為額定電壓。從DVR的工作原理上進行分析,其實際的作用就是對提供線路中電壓補償,避免線路由于電壓跌落出現故障[3]。
3.3不間斷供電電源不間斷的供電電源,簡稱為UPS。目前,隨著科技不斷發展,UPS已經逐漸趨向于市場化,其主要有三種類型:在線型、離線型以及在線互動型。在實現的UPS中,需要具有儲能單元,其中最為常見的儲能單元為的電池儲能。在線型的UPS在逆變器支持下實現負荷供電,實際供電與電源無關,因此在電壓質量獲得上比較高。
3.4發電機勵磁大功率的電力電子技術在發電機勵磁中的應用,作用突出。首先需要對發電機的勵磁系統進行分析,發電機的勵磁系統能夠實現機端電壓的維持,合理分配多臺電發電機之間的無功功率,繼而提升電力系統的穩定性。目前,在電力系統中,半導體勵磁是其最為主要的勵磁方式,在實際電力系統運行中,可以按照電源的不同,將半導體勵磁分為他勵和自勵。現行在電力企業中比較實用的就是基于勵磁電力電子裝置的三相晶閘管全橋整流器,在該整流器中采用時間常數比較小的一階慣性環節。
4微網可靠性供電
4.1交流微網結構與特點典型的交流微網組成有:光伏發電、儲能電源、風電機組以及柴油發電機組等。在以上的組成部件中,風電以及儲能等電源,在電力電子變換器的轉換下,實現了對額定電壓頻率交流電的轉換,并在靜態開關的轉換下連接在微網母線上。交流微網的特點比較突出,主要表現在以下方面。第一,微網的電壓等級比較低,在實際線路中與配電網相連,在大功率電力系統的尾端;第二,容量比較小,在10KV等級的微網容量為數百千瓦到十兆瓦之間;第三,電流實現雙向流動,在微網結構中為分布式的電源網狀,基于微網這樣的特點,其能夠實現的功能比較多。一方面能夠實現對大電網的功率輸送,另一方面,也能夠從大功率電網中吸收功率;第四,微網具有多種工作模式,其中比較突出的就是并網和離網兩種形式。并網工作形式幫助微網能夠在大功率電網中正常運行,而離網是指,當大電網出現故障時,微網能夠迅速的脫離大功率電網,而實現獨立運行。
4.2微網分布式電源電流保護微網分布式電源主要包含兩大類的電源,第一,逆變器接口電源。例如光伏發電、風力發電以及儲能電源等。第二,傳統發電機接口電源。例如柴油發電機、燃汽輪機等。當微網分布式電源線路中出現故障時,以上兩種電源類型所能夠提供的短路電流存在著較大的差異。對于逆變器接口電源來說,電源線路在線路中容易受到電力電子器件等耐流能力的影響與限制,其電源所能夠提供的短路電流值不超過線路中額定電流的1.5倍。在這樣的線路背景下,該種電源類型不能夠實現有力的電流保護。而對于另外一種分布式電源進行分析,當線路中發生短路時能夠利用串聯等效電抗的形式,實現較大短路電流的供應,因此該種電源類型與逆變器接口分布式電源相比,具有明顯的優勢,能夠實現電流保護。
5結論
隨著電力系統不斷發展,電力系統的供電可靠性逐漸受到社會所關注。因此,在本文中對大功率電力電子技術進行分析,研究大功率電力電子技術提高供電可靠性的應用,并對微網可靠性供電進行詳細研究。在電力電力技術可靠性供電中的應用研究中,分別對轉換開關、動態電壓恢復器、不間斷供電電源以及發電機勵磁等方面進行詳細研究,針對這些供電系統的作用論述,希望能夠為電力供電系統發展帶來幫助。
參考文獻:
[1]賀超.具有高可靠性的數字化大功率電力電子集成模塊研究與應用[D].杭州:浙江大學,2014.
1.電力電子技術的發展
現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。
1.1整流器時代
大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。
1.2逆變器時代
七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。
1.3變頻器時代
進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。
2.現代電力電子的應用領域
2.1計算機高效率綠色電源
高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。
計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。
2.2通信用高頻開關電源
通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。
因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3直流-直流(DC/DC)變換器
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。
2.4不間斷電源(UPS)
不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。
現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。
目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。
2.5變頻器電源
變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。
國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。
2.6高頻逆變式整流焊機電源
高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。
逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。
由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。
2.7大功率開關型高壓直流電源
大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。
自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。
國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。
2.8電力有源濾波器
傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。
電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。
2.9分布式開關電源供電系統
分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。
八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。
分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。
3.高頻開關電源的發展趨勢
在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。
3.1高頻化
理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統“整流行業”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為“開關變換類電源”,其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。
3.2模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。
3.3數字化
在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。
3.4綠色化
一、電力電子技術的內容、特點和發展趨勢
1.1電力電子技術的內容和特點。電力電子技術是將電子技術應用在電力領域,實現電力系統的智能電網化,也是集電力、電子技術和控制為一體的綜合領域。其主要研究的是電力變換等內容,電力的變換是為了人們能夠更加方便、有效的使用電能,為人們的生活提供更好的服務。電力電子技術與傳統的電子技術相比較擁有對電流和電壓更強的承受能力,也具有更大的功率。然而在大功率下,一些元器件本身會出現器件發熱、效率降低、功耗增加等情況,為了解決類似情況,元器件自身都采用開關的形式,這種運行形式是電力電子器件在電力電子技術中使用和運行的最大特點。1.2電力電子技術的發展趨勢。電力電子技術一共分為制造技術和變流技術兩個部分。器件的制造技術是將器件內的控制、驅動等功能進行集成,形成集成電路,并降低功耗,是電力電子技術的一個未來發展方向[1]。在上個世紀八十年代,整流電路在電子電力技術當中占有主導地位,但是隨著自關斷等元器件的出現與應用,電力電子技術中出現了很多新式的電路。而電力電子技術當中的控制功能對電力電子技術的發展起很大的促進作用,使電力電子技術中的控制系統得到了前所未有的發展,并取得了巨大的成果。目前,電力電子技術的控制功能,逐漸由傳統的模擬控制轉變為新型的數字控制,這樣轉變也是控制系統在電力電子技術中的一個未來發展的方向。
二、電力電子技術在電力系統中的應用
2.1電力電子技術在發電過程中的應用。改變電力系統中元器件的運行方式是電力電子技術對電力系統改變的主要目的。在發電過程當中,主要設計的元器件包括水力發電機、發電廠水泵、太陽能控制軟件等。在水力發電過程中,水流的流量等方面決定著發電機的效率,水利發電機的轉速是隨著水流的變化而發生變化的,所以保持恒定的輸出功率,是電力電子技術提高水利發電機運行效率的重要手段。發電廠風機水泵是發電廠用于發電的主要元器件,其效率決定著發電的電量,而傳統的水泵具有耗電量高、運行效率低等缺點,利用電力電子技術對水泵進行變速,可使其降低能耗、提高效率。太陽能新型的、可持續的能源,使用電力電子技術建立太陽能控制系統,讓太陽能進行直流和交變電流的轉化,從而實現發電,利用太陽能發電對人類的未來進行可持續發展有著重要的貢獻。2.2電力電子技術在輸電過程中的應用。在輸電過程中,其輸出方式分為直流輸電、輕型直流輸電和柔流輸電技術三種方式。直流輸電方式的主要優點包括輸電量大、輸電穩定和調節控制方便等。在遠距離的輸電過程中,直流輸電方式具有很大的優勢[2]。但隨著科學水平的提高,直流輸電方式得到了很大的改進和提高,輸電方式產生了新的變化,而新的輸電方式便是輕型直流輸電方式。輕型直流輸電能夠解決很多直流輸電當中遇到的困難與阻礙(比如向無交流電源進行輸電)。輕型直流輸電使用的是由IGBI等電子元件組成的,利用脈寬調制技術進行逆變的輸電方式,是一種新的科學技術。柔流技術形成于二十世紀八十年代末,其主要的優點是對交流輸電的控制,提高系統穩定性。它不僅可以增強交流電在輸出過程中的穩定性,還能夠降低輸出能耗,為交流輸電提高質量和效率。
總結
綜上所訴,電力電子技術在電力系統中起著十分重要的作用,它能夠為電力系統的正常運行提供重要的保障,并提高電力系統的效率、降低能耗。也為其未來發展起到促進的作用。本文就電力電子技術在電力系統當中的發電和輸電過程進行了簡單的分析和研究,希望能夠對想了解和研究這方面內容的人們起到一定的作用。
參考文獻
在我國發電廠中,發電多是靜止勵磁系統。使用過程中,勵磁機繁重且耗能巨大,電力電子技術的發展便可大大緩解這個問題,可以代替勵磁機中的勵磁環節,使發電過程變得更便捷且耗能少,易操作,方便控制。同時,電力電子技術在變頻控制上同樣起到很大作用。發電廠中發出的電能頻率多為波動的,而民用的交流電頻率要在220V為峰值進行使用,傳統的變壓方式多為變電站的中轉,而電力電子技術可以簡化這個環節,使電流更適合民用電的使用。電力電子技術在發電過程中的優勢對一些新能源發電同樣適用,如廣泛使用的風力發電、水利發電等,都離不開電力電子技術來正常運行。
1.2電力電子技術在電力傳輸過程中的應用
電力電子技術在傳輸線路上的應用有很多,其中主要以柔流電技術、高壓直流電技術以及靜止無功補償器技術上,以線路傳輸過程中的高壓直流電技術為例,說明在電力傳輸過程中電力電子技術的重要作用。在沒有這種技術的時候,對于高壓直流電的傳送,在傳送過程中需加有若干變壓器來完成,這不僅增加了傳送電過程中的成本,還使工作的程序變得復雜,而電力電子技術的廣泛使用,尤其是晶管換流閥在高壓直流電傳送過程中的使用,使電壓變得可以自動化控制,節約成本,減少了傳送過程中的工序,而且準確性、安全性和可控性都比傳統的傳送方法高得多。
1.3電力電子技術在電力使用過程中的應用
電力電子技術不僅能在電力產生、傳送過程中有廣泛的應用,還能保證在使用過程中帶給使用者的便捷。回想我們家中的電力配備,保證安全的是一個全自動的電表,其實在這其中便應用到電力電子技術,它可以增強對電流、電壓的可控性,自動感應到電力的強度,進行調控,保證了家庭用電的安全性。同時,在一些大型工廠、單位等,用電量較大,對電力的穩定性要求很高,配有電力電子技術可以使在配電過程中,電流變得更加穩定,避免各種不穩定的波動帶來的不良影響。
2電力電子技術對于電力系統的其他應用
2.1節約能源
通過電力電子技術的應用,可以對電能進行綜合處理,使電能能夠最大限度的發揮出來,并且能夠應用得更加合理、高效,真正做到節約能源。例如,在一些造紙廠、冶煉廠等,可以根據工廠的性質和對電能的具體需求,利用電力電子技術,能夠將電能自動化的進行合理的分配,使耗電量大、功率大的場所能夠達到要求,而對于一些對電量要求不大的地方可以適當的進行節省。據調查顯示,2000年的大型工廠的節電量相當于1990年發電的15%,截止到今年,全國又將14個項目列入節電推廣項目中,可見,電力電子技術在資源的節約中起到了很大的作用。
大功率,高電壓的電力電子設備都是有數量較多的單個性能參數一致的功率器件經過并聯、串聯、串聯后再并聯等方式組合而成。
1.1多個功率器件并聯時自愈工作原理多個功率器件并聯時如圖1所示,并聯于功率器件勻流電阻兩端的光電隔離開關輸出信號會同步于功率器件的開斷工作狀態,該信號與同步觸發脈沖器的輸出信號進行比較。這兩個信號如果同步則比較器不輸出,如果不同步則比較器輸出控制命令,令與該功率器件串聯的斷路開關斷開,自動斷開故障的功率器件,同時通過顯示控制總線向顯示控制屏發出顯示該功率器件故障的指示信息。
1.2多個功率器件串聯時自愈工作原理多個功率器件串聯時如圖2所示,并聯于功率器件的光電隔離開關的輸出信號會同步于功率器件的開斷工作狀態,該信號與同步觸發脈沖器的輸出信號進行比較。這兩個信號如果同步,則比較器不輸出,如果不同步則輸出控制命令,令與該功率器件并聯的旁路開關閉合,自動短路掉故障的功率器件,同時通過顯示控制總線向顯示控制屏發出顯示該功率器件故障的指示信息。
2應用實例
以串聯諧振耐壓試驗設備的變頻電源為例進行試驗測試,變頻電源的輸出采用大功率高耐壓多只IGBT器件并聯后組成橋式輸出電路。變頻電源的技術參數為:額定輸出功率:100kW;額定輸入電壓:三相380V±12%50Hz;輸出電壓:0~350V連續可調,輸出電壓不穩定度≤1%;額定輸出電流:286A。圖3為橋式輸出四分之一橋臂的部分電路,QA11和QA21為輸出功率器件IGBT;KA11和KA21分別為QA11和QA21功率器件的自動剔除的高速繼電器;RA11和RA21為功率器件的勻流電阻;AI1為功率器件的驅動輸入信號端;AO11和AO21為對應功率器件異常后輸出指示信號端,高電平為異常;UA11和UA21為比較器;OUTA為橋臂輸出端。電路工作原理為,比較器UA11和UA21始終比較輸入端1和2的信號,若這兩個電平信號始終同步則,它的輸出端3處于低電平,繼電器KA11和KA21不動作,功率器件QA11和QA21全部正常工作;若某個功率器件擊穿或開路,該路對應的比較器1和2路的輸入端將會不同步,此時比較器輸出端3將輸出高電平,驅動該路繼電器閉合,切斷了該功率器件電源回路,同時使繼電器自保持,且輸出一個高電平報警信號,其余的功率器件由于電路設計時都具有比較大的冗余,能夠繼續工作,能夠確保試驗過程繼續進行下去,直到試驗工作全面完成。實現了預知故障,提高了電力電子設備工作可靠性。對于串聯的功率器件可以采用類似的方法進行單個功率器件損壞后自動剔除。
從有源電力濾波器的構成來看,有源電力濾波器主要采用了電源供電的方式,對電力系統中的諧波進行補償,其優點是能夠進行動態補償,與傳統的固定補償方法相比具有明顯的優勢。由此可見,有源電力濾波器在無功補償方面可以得到重要應用。
1.2有源電力濾波器能夠保持電力系統穩定運行
由于有源電力濾波器能夠對電力系統中的大小和頻率都變化的諧波進行無功補償,因此可以保證電力系統中的諧波處于穩定狀態。基于這一優點,有源電力濾波器在電力系統中得到了重要應用,保證了電力系統能夠長時間穩定運行,提高了電力系統的穩定性。
2電力電子技術在電力系統中的應用,產生了靜止同步補償器裝置
2.1靜止同步補償器可以當作無功電流源使用
從靜止同步補償器的構成以及其功能設定來看,靜止同步補償器屬于無功電流源的重要類型,其電流的變化主要隨著負荷電流而發生變化,對補償電力系統電流損失,提高電力系統穩定性具有重要作用。
2.2靜止同步補償器對電力系統的補償效果比較明顯
由于靜止同步補償器屬于無功電流源,并且其補償電流處于變化狀態,這樣的無功電流源對電力系統的補償效果相對明顯一些。從這一應用來看,靜止同步補償器對電力系統補償起到了重要作用。
2.3靜止同步補償器的無功電流可以隨時進行控制
從靜止同步補償器的實際使用來看,無功電流并不是一成不變的,而是根據電力系統的實際需要進行不斷變化的,其可控性是靜止同步補償器區別與其他補償器的重要特點,為此,我們應認識到靜止同步補償器的可控性優勢。
3電力電子技術在電力系統中的應用,催生了動態電壓恢復器
通過對電力電子技術在電力系統中的應用進行分析后可知,動態電壓恢復器是基于電力電子技術的重要裝置,在電力系統中取得了積極的應用效果,對滿足電力系統運行需要,提高電力系統運行質量起到了重要的促進作用。結合動態電壓恢復器的實際使用,動態電壓恢復器的特點主要表現在以下幾個方面:
3.1動態電壓恢復器可以認為是動態受控的電壓源
動態電壓恢復器在整個配電系統中起著電壓源的作用,可以通過一些控制方法和手段減少能量消耗,減輕其對電壓的不良影響,避免了電壓跌落、電壓不平衡及諧波等的產生。
3.2動態電壓恢復器可以消除負荷電壓對電壓系統的影響
在電力系統運行過程中,負荷電壓容易對電壓系統造成不利影響,應用了動態電壓恢復器之后,可以提高電壓的穩定性,保證電力系統電壓穩定運行,充分滿足電力系統運行需要,使電力系統在整體運行效果上達到預期目標,穩定了電壓系統。
3.3動態電壓恢復器可以補償電壓跌落
當直流側能量通過從系統整流獲得時,在系統側即使發生單相故障,其它兩相仍可以提供電能來維持DVR的正常運行,補償長期的電壓跌落也成為可能。而動態電壓恢復器可以有效地防止因電壓跌落造成的系統故障,延長了設備使用壽命。基于動態電壓恢復器的特點,在電力系統運行過程中,動態電壓恢復器的應用,可以有效解決電壓跌落問題,并在電壓跌落過程中進行及時的補償,保證電力系統在運行中的穩定性滿足實際要求,由此可見,動態電壓恢復器對補償電壓跌落具有較為明顯的效果。
2電子電力技術分類及在電力系統中的可實際應用領域
電力電子技術包括電力電子器件的制作技術和變流技術兩個大類,應用領域寬,廣泛用于交通運輸、電力系統、電子裝置電源、新能源等,在家用電器、變頻空調、工業設備中預防電源間斷的UPS應用、航天飛行器等領域也有應用實踐的區域。具體來看,家用節能燈、變頻空調、電視音響、洗衣機、微波爐等都是采用電力電子技術。電力電子技術應用廣泛,其在工業及科技發展方面的作用也十分突出,下文針對兩個不同應用方面提出一點看法
2.1社會供電系統應用
傳統的電力供量已無法滿足現代需求量,不僅要開發資源,技術的開發更具主要性。提高能源的使用效率,需要電力技術的實踐,而電力電子產品相配套使用,能夠提高安全指數,經濟節能,體現生態化,經濟高效化的現代化精神,使現代技術與環境高效統一。據資料表明,新能源發電在未來幾十年,總量將增加幾倍,隨著太陽能、生物質能、風能發電成本的大幅度下降,將增加競爭力。然而二次能源的運用仍有一定的局限性,如,太陽能發電需要解決發電時間的局限性,風力發電需要解決土地資源利用的矛盾,只要在技術上有新突破,克服局限性,將對人類社會造就巨大福祉,科研人員更應該看清實際應用的具體要求進行探究。
2.2遠距離輸電應用
直流輸電(HVDC)和輕型直流輸電(HVDCLight)技術相比較,直流輸電具有輸電容量大、穩定性好、控制調節靈活等優點。1970年世界上第一項晶閘管換流器,標志著電力電子技術正式應用于直流輸電。之后世界上新建的直流輸電工程均采用晶閘管換流閥。FACTS技術是一項基于電力電子技術與現代控制技術對交流輸電系統的阻抗、電壓及相位實施靈活快速調節的輸電技術,可實現對交流輸電功率潮流的靈活控制,大幅度提高電力系統的穩定水平。20世紀90年代以來,國外在研究開發的基礎上開始將FACTS技術用于實際電力系統工程。其輸出無功的大小,裝置結構簡單,操作方便,成本較低。諸如此類,通過技術之間的比較探討才能進行更高效地實踐。
3對技術化的應用提出意見和發展指引
3.1針對發展過程的某些具體狀況
進行專題探討,如諧波污染,針對解決方案進行研究,對無源濾波器與有源濾波器兩種治理方式進行比較:無源電力濾波器,用無源電力濾波器進行抑制諧波、補償無功和提高電網的功率因數,但濾波效果受電力系統阻抗的影響較大,與無源電力濾波器相比,有源電力濾波器具有更大的優勢,有源電力濾波器可以補償各次諧波,還可同時補償無功功率、抑制閃變、調節和平衡三相不平衡電壓,濾波特性不受系統阻抗和頻率的影響,可消除與電網阻抗發生串、并聯諧振的危險。
3.2注重生態化的科技研究,節能
是電力電子技術應用未來發展的重要領域。進行電機系統的節能是趨勢所需,據資料表明,按照國家計劃,今5年內,將投500億元,爭取年節電達到1000億kWh,作為國民經濟行業主力設備電動機系統的調速節能,存在巨大的需求。未來10年,對經濟型調速裝置的開發、變頻調速,城市交通系統,磁懸浮列車異步電動機的變頻調速,電動汽車起動和穩定運行,要求有大量技術施用。